135 resultados para AMORPHOUS POLYMERS
Resumo:
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
High-density polyethylene resins have increasingly been used in the production of pipes for water- and gas-pressurized distribution systems and are expected to remain in service for several years, but they eventually fail prematurely by creep fracture. Usual standard methods used to rank resins in terms of their resistance to fracture are expensive and non-practical for quality control purposes, justifying the search for alternative methods. Essential work of fracture (EWF) method provides a relatively simple procedure to characterize the fracture behavior of ductile polymers, such as polyethylene resins. In the present work, six resins were analyzed using the EWF methodology. The results show that the plastic work dissipation factor, beta w(p), is the most reliable parameter to evaluate the performance. Attention must be given to specimen preparation that might result in excessive dispersion in the results, especially for the essential work of fracture w(e).
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.
Resumo:
The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.
Resumo:
Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene - propylene-diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. (C) 2010 Society of Chemical Industry
Resumo:
Properties of hybrid films can be enhanced if their molecular architecture is controlled. In this paper, poly (p-phenylene vinylene) was mixed with stearic acid in order to form stable hybrid Langmuir monolayers. Surface properties of these films were investigated with measurements of surface pressure, and also with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The films were transferred from the air-water interface to solid supports through the Langmuir-Blodgett technique, and the viability of the film as optical device was investigated with fluorescence spectroscopy. Comparing the fluorescent spectra for the polymer in solution, as a casting film, and as an LB film, the emission bands for LB films were narrower and appeared at lower wavelengths. The interactions between the film components and the design for the LB film may take advantage of the method to immobilize luminescent polymers in mixed ultrathin films adsorbed in solid matrices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A series of new phenyl-based conjugated copolymers has been synthesized and investigated by vibrational and photoluminescence spectroscopy (PL). The materials are: poly( 1,4-phenylene-alt-3,6-pyridazine) (COP-PIR), poly(9,9-dioctylfluorene)-co-quaterphenylene (COP-PPP) and poly[(1,4-phenylene-alt-3,6-pyridazine)-co-(1,4-phenylene-alt-9,9-dioctylfluorene)] (COP-PIR-FLUOR), with 3.5% of fluorene. COP-PPP and COP-PIR-FLUOR have high fluorescence quantum yields in solution. Infrared and Raman spectra were used to check the chemical structure of the compounds. The copolymers exhibit blue emission ranging front 2.8 to 3.6 eV when excited at E(exc)=4.13 eV. Stokes-shift Values were estimated on pristine samples in their condensed state from steady-state PL-emission and PL-excitation spectra. They suggest a difference in the torsional angle between the molecular configuration of the polymer blocks at the absorption and PL transitions and also in the photoexcitation diffusion. Additionally, the time-resolved PL of these materials has been investigated by using 100 fs laser pulses at E(exc)=4.64 eV and a streak camera. Results show very fast biexponential kinetics for the two fluorene-based polymers with decay times below 300 ps indicating both intramolecular, fast radiative recombination and migration of photogenerated electron-hole pairs. By contrast, the PL of COP-PIR is less intense and longer lived, indicating that excitons are confined to the chains in this polymer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
Instrumented indentation has been used to investigate the mechanical properties of BETAMATE 1496 (R) Epoxy adhesive. The properties of the adhesive were analyzed by measuring its hardness and its Young`s modulus in samples extracted from six different positions of the front door of a commercial passenger vehicle in two phases of processing: after application of the adhesive in the door assembling (""pre-cured"" state) and after final cure in the painting oven (""cured"" state). Special attention was given to setting the optimal parameters (""creep"" time and unloading time step) for the instrumented indentation testing for the present application. Young`s modulus values around 1.1 +/- 0.2 GPa and hardness values around 0.15 +/- 0.05 GPa were obtained for all samples, irrespective of the variation of the indentation parameters in the testing procedure and of the relative position of the adhesive in the door frame in both states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This article reports experimental results obtained in a laboratory-scale photochemical reactor on the photodegradation of poly(ethylene glycol) (PEG) in aqueous solutions by means of the photo-Fenton and H(2)O(2)/UV processes. Dilute water solutions of PEG were fed to a batch reactor, mixed with pertinent reactants, and allowed to react under different conditions. Reaction progress was evaluated by sampling and analyzing the concentration of the total organic carbon (TOC) in solution as a function of the reaction time. Organic acids formed during oxidation were determined by HPLC analyses. The main acids detected in both processes were acetic and formic. Glycolic acid was detected only in the photo-Fenton process, and malonic acid was detected only in the H(2)O(2)/UV treatment, indicating that different reaction paths occur in these processes. The characteristics of both processes are discussed, based on the evolution of the TOC-time curves and the concentration profiles of the monitored organic acids. The experimental results constitute a contribution to the design of industrial processes for the treatment of wastewaters containing soluble polymers with similar properties.
Resumo:
Experimental results are presented for the liquid-liquid equilibrium of aqueous two-phase systems containing a synthetic polyelectrolyte (polysodium acrylate, polysodium methacrylate, and polysodium ethylene sulfonate) and polyethylene glycol at (298.2 and 323.2) K. A total of 40 phase diagrams were obtained, comprising data both of the binodal curve (obtained through cloud-point measurements) and of equilibrium compositions. The influences of temperature, the nature of the polyelectrolyte monomer unit, and the chain length of both types of polymers are analyzed and discussed.