221 resultados para volume flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present paper is to thermally characterize a cross-flow heat exchanger featuring a new cross-flow arrangement, which may find application in contemporary refrigeration and automobile industries. The new flow arrangement is peculiar in the sense that it possesses two fluid circuits extending in the form of two tube rows, each with two tube lines. To assess the heat exchanger performance, it is compared against that for the standard two-pass counter-cross-flow arrangement. The two-part comparison is based on the thermal effectiveness and the heat exchanger efficiency for several combinations of the heat capacity rate ratio, C*, and the number of transfer units, NTU. In addition, a third comparison is made in terms of the so-called ""heat exchanger reversibility norm"" (HERN) through the influence of various parameters such as the inlet temperature ratio, T, and the heat capacity rate ratio, C*, for several fixed NTU values. The proposed new flow arrangement delivers higher thermal effectiveness and higher heat exchanger efficiency, resulting in lesser entropy generation over a wide range of C* and NTU values. These metrics are quantified with respect to the arrangement widely used in refrigeration industry due to its high effectiveness, namely, the standard two-pass counter-cross-flow heat exchanger. The new flow arrangement seems to be a promising avenue in situations where cross-flow heat exchangers for single-phase fluid have to be used in refrigeration units. (c) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical note discusses the possibility of using a more simplified scheme to estimate the plastic multiplier when some material shows volume changes, e.g. soil, balsa wood foam and other similar materials. Two procedures regarding volume changes during the plastic phase are discussed here. The first one is the classic procedure applied to non-associative plasticity, for which a Drucker-Prager-like surface is adopted to represent the plastic potential. For the second procedure, the plastic potential is not explicitly known, however, its orthogonal direction is chosen respecting a plastic volume change parameter similar to Poisson`s ratio. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 mu g PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1) day(-1) for RI, and from 0.06 to 4.15 mg PCP l(-1) day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 24 h for R1 and 18 In for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, RI and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1)of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of similar to 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.