210 resultados para relative water economy
Resumo:
During the past 40 years colluvial and alluvial deposits have been used in Brazil as good indicators of regional landscape sensitivity to Quaternary environmental changes. In spite of the low resolution of most of the continental sedimentary record, geomorphology and sedimentology may favor palaeoenvironmental interpretation when supported by independent proxy data. This paper presents results obtained from pedostratigraphic sequences, in near-valley head sites of southern Brazilian highlands, based on geomorphologic. sedimentologic, micromorphologic, isotopic and palynologic data. Results point to environmental changes, with ages that coincide with Marine Isotopic Stages (MIS) 5b; 3; 2 and 1. During the late Pleistocene, although under temperatures and precipitation lower than today, the local record points to relatively wet local environments, where shallow soil-water saturated zones contributed to erosion and sedimentation during periods of climatic change, as during the transition between MIS 2 and MIS 1. Late Pleistocene events with ages that coincide with the Northern Hemisphere Younger Dryas are also depicted. During the mid Holocene, slope-wash deposits suggest a climate drier than today, probably under the influence of seasonally contrasted precipitation regimes. The predominance of overland flow-related sedimentary deposits suggests an excess of precipitation over evaporation that influenced local palaeohydrology. This environmental condition seems to be recurrent and explains how slope morphology had influenced pedogenesis and sedimentation in the study area. Due to relative sensitiveness, resilience and short source-to-sink sedimentary pathways, near-valley head sites deserve further attention in Quaternary studies in the humid tropics. (c) 2008 Elsevier B.A. All rights reserved.
Resumo:
Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We reconstructed Middle Pleistocene surface hydrography in the western South Atlantic based on planktonic foraminiferal assemblages, modern analog technique and Globorotalia truncatulinoides isotopic ratios of core SP1251 (38 degrees 29.7`S / 53 degrees 40.7`W / 3400 m water depth). Biostratigraphic analysis suggests that sediments were deposited between 0.3 and 0.12 Ma and therefore correlate to Marine Isotopic Stage 6 or 8. Faunal assemblage-based winter and summer SST estimates suggest that the western South Atlantic at 38 degrees S was 4-6 degrees C colder than at present, within the expected range for a glacial interval. High relative abundances of subantarctic species, particularly the dominance of Neogloboquadrina pachyderma (left), support lower than present SSTs throughout the recorded period. The oxygen isotopic composition of G. truncatulinoides suggests a northward shift of the Brazil-Malvinas Confluence Zone and of the associated mid-latitude frontal system during this Middle Pleistocene cold period, and a stronger than present influence of superficial subantarctic waters and lowering in SSTs at our core site during the recorded Middle Pleistocene glacial.
Resumo:
In this study, we examined Spatial-temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 +/- 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 +/- 16 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride`s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals` adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the effects of knowledge of results (KR) frequency and task complexity on motor skill acquisition. The task consisted of throwing a bocha ball to place it as close as possible to the target ball. 120 students ages 11 to 73 years were assigned to one of eight experimental groups according to knowledge of results frequency (25, 50, 75, and 100%) and task complexity (simple and complex). Subjects performed 90 trials in the acquisition phase and 10 trials in the transfer test. The results showed that knowledge of results given at a frequency of 25% resulted in an inferior absolute error than 50% and inferior variable error than 50, 75, and 100 I frequencies, but no effect of task complexity was found.
Resumo:
Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
There are about 7500 water treatment plants in Brazil. The wastes these plants generate in their decantation tanks and filters are discharged directly into the same brooks and rivers that supply water for treatment. Another serious environmental problem is the unregulated disposal of construction and demolition rubble, which increases the expenditure of public resources by degrading the urban environment and contributing to aggravate flooding and the proliferation of vectors harmful to public health. In this study, an evaluation was made of the possibility of recycling water treatment sludge in construction and demolition waste recycling plants. The axial compressive strength and water absorption of concretes and mortars produced with the exclusive and joint addition of these two types of waste was also determined. The ecoefficiency of this recycling was evaluated by determining the concentration of aluminum in the leached extract resulting from the solubilization of the recycled products. The production of concretes and mortars with the joint addition of water treatment sludge and recycled concrete rubble aggregates proved to be a viable recycling alternative from the standpoint of axial compression strength, modulus of elasticity, water absorption and tensile strength by the Brazilian test method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In developing countries such as Brazil, the wastes generated in the decanters and filters of water treatment plants are discharged directly into the same rivers and streams that supply water for treatment. Another environmental problem is the unregulated discard of wood wastes. The lumber and wood products industry generates large quantities of this waste, from logging to the manufacture of the end product. Brazil has few biomass plants and therefore only a minor part of these wastes are reused. This paper presents the results of the first study involving a novel scientific and technological approach to evaluate the possibility of combining these two types of wastes in the production of a light-weight composite for concrete. The concrete produced with cement:sand:composite:water mass ratios of 1:2.5:0.67:0.6 displayed an axial compressive strength of 11.1 MPa, a compressive and diametral tensile strength of 1.2 MPa, water absorption of 8.8%, and a specific mass of 1.847 kg/m(3). The mechanical properties obtained with this concrete render it suitable for application in non-structural elements. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.
Resumo:
This paper describes the manufacture of tubular ceramic membranes and the study of their performance in the demulsification of soybean oil/water emulsions. The membranes were made by iso-static pressing method and micro and macro structurally characterized by SEM, porosimetry by mercury intrusion and determination of apparent density and porosity. The microfiltration tests were realized on an experimental workbench, and fluid dynamic parameters, such as transmembrane flux and pressure were used to evaluate the process relative to the oil phase concentration (analysed by TOC measurements) in the permeate. The results showed that the membrane with pores` average diameter of 1.36 mu m achieved higher transmembrane flux than the membrane with pores` average diameter of 0.8 mu m. The volume of open pores (responsible for the permeation) was predominant in the total porosity, which was higher than 50% for all tested membranes. Concerning demulsification, the monolayer membranes were efficacious, as the rejection coefficient was higher than 99%.
Resumo:
Mortar is the material responsible for the distribution of stresses in masonry structures. The knowledge about the fresh and hardened properties of mortar is fundamental to ensure a good performance of masonry walls. Water/cement ratio and aggregates grading are among several variables that influence physical and mechanical behaviour of mortars. An experimental program is presented in order to evaluate the influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Eighteen compositions of mortar are prepared using three relations cement:lime:sand, two types of sand and three water/cement ratios. Specimens are analyzed through flow table test, compressive and flexural strength tests. Results indicate that the increase of water/cement ratio reduces the values of hardened properties and increases the workability. Besides, sands grading has no influence in compressive strength. On the other hand, significant differences in deformation capacity of mortars were verified with the variation of the type of sand. Finally, some correlations are presented among hardened properties and the compressive strength. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Some peculiarities of water retention in a tropical lateritic soil of clayey nature are presented and discussed. The typical soil microstructure is shown through thin-layer plates emphasizing soil microaggregation and pore distribution and their repercussion on the soil-water retention curve and on hysteresis. It is shown that the clayey soil has a behavior that to a large extent resembles sandy soil, which is characterized by the relatively high saturated hydraulic conductivity, low air-entry value, and small suction range at which water drainage takes place. The severe weathering processes that originated this soil have produced an altered soil that seems to be homogeneous in terms of physical indices, hydraulic conductivity, and soil-water retention characteristics, up to 4.5 m in depth.
Resumo:
Estrogens are a class of micro-pollutants found in water at low concentrations (in the ng L(-1) range), but often sufficient to exert estrogenic effects due to their high estrogenic potency. Disinfection of waters containing estrogens through oxidative processes has been shown to lead to the formation of disinfection byproducts, which may also be estrogenic. The present work investigates the formation of disinfection byproducts of 17 beta-estradiol (E2) and estrone (E1) in the treatment of water with ozone. Experiments have been carried out at two different concentrations of the estrogens in ground water (100 ng L(-1) and 100 mu g L(-1)) and at varying ozone dosages (0-30 mg L(-1)). Detection of the estrogens and their disinfection byproducts in the water samples has been performed by means of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a triple quadrupole (QqQ) and a quadrupole-time of flight (QqTOF) instrument. Both E2 and El have been found to form two main byproducts, with molecular mass (MM) 288 and 278 in the case of E2, and 286 and 276 in the case of El, following presumably the same reaction pathways. The E2 byproduct with MM 288 has been identified as 10epsilon-17beta-dihydroxy-1,4-estradieno-3-one (DEO), in agreement with previously published results. The molecular structures and the formation pathways of the other three newly identified byproducts have been suggested. These byproducts have been found to be formed at both high and low concentrations of the estrogens and to be persistent even after application of high ozone dosages. (C) 2011 Elsevier Ltd. All rights reserved.