77 resultados para parametric implicit vector equilibrium problems
Resumo:
There is an increasing interest about the use of stable isotopes for body composition analysis in pediatrics. To ensure the success of total body water analysis by the deuterium dilution method, it is fundamental to determine the equilibrium tune (plateau) of deuterium in the body fluid studied. Objectives: We report here the equilibration time of deuterium oxide in the saliva of newborns after oral intake of the isotope. Methods: Twenty healthy term newborn infants, 10 males and 10 females, were analyzed. Saliva was collected from each newborn before the oral administration of a 100 mg/kg dose of deuterium oxide (baseline sample) and then at 1-hour intervals for 5 hours after administration. Deuterium enrichment of saliva was determined by isotope ratio mass spectrometry according to the recommendations of the International Atomic Energy Agency. Results: The plateau time of deuterium in saliva occurred 3 hours after oral administration of the stable isotope. Conclusion: These data are essential for further studies on the body composition of newborn infants. To the best of our knowledge, this is the first study regarding the equilibration time of deuterium in the saliva of term newborns. JPGN 48:471-474, 2009.
Resumo:
Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.