270 resultados para micro-electron capture detection
Resumo:
Marine turtles are increasingly being threatened worldwide by anthropogenic activities. Better understanding of their life cycle, behavior and population structure is imperative for the design of adequate conservation strategies. The mtDNA control region is a fast-evolving matrilineal marker that has been employed in the study of marine turtle populations. We developed and tested a simple molecular tracing system for Caretta caretta mtDNA haplotypes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Using this technique, we were able to distinguish the SSCP patterns of 18 individuals of the haplotypes CC-A4, CC-A24 and CCxLO, which are commonly found in turtles sampled on the Brazilian coast. When we analyzed 15 turtles with previously unknown sequences, we detected two other haplotypes, in addition to the other four. Based on DNA sequencing, they were identified as the CC-A17 and CC-A1 haplotypes. Further analyses were made with the sea turtles, Chelonia mydas (N = 8), Lepidochelys olivacea (N = 3) and Eretmochelys imbricata (N = 1), demonstrating that the PCR-SSCP technique is able to distinguish intra-and interspecific variation in the family Cheloniidae. We found that this technique can be useful for identifying sea turtle mtDNA haplotypes, reducing the need for sequencing.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/56855-0]
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.
Resumo:
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494379]
Resumo:
This paper reports results from a search for nu(mu) -> nu(e) transitions by the MINOS experiment based on a 7 x 10(20) protons-on-target exposure. Our observation of 54 candidate nu(e) events in the far detector with a background of 49.1 +/- 7.0(stat) +/- 2.7(syst) events predicted by the measurements in the near detector requires 2sin(2)(2 theta(13))sin(2)theta(23) < 0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at delta(CP) = 0. The experiment sets the tightest limits to date on the value of theta(13) for nearly all values of delta(CP) for the normal neutrino mass hierarchy and maximal sin(2)(2 theta(23)).
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
This Letter reports on a search for nu(mu)->nu(e) transitions by the MINOS experiment based on a 3.14x10(20) protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27 +/- 5(stat)+/- 2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of nu(mu)->nu(e) oscillations, this 1.5 sigma excess of events is consistent with sin(2)(2 theta(13)) comparable to the CHOOZ limit when |Delta m(2)|=2.43x10(-3) eV(2) and sin(2)(2 theta(23))=1.0 are assumed.
Resumo:
We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.
Resumo:
An experiment was conducted to observe triple- and quadruple-escape peaks, at a photon energy equal to 6.128 MeV, in the spectra recorded with a high-purity Ge detector working in coincidence with six bismuth germanate detectors. The peak intensities may be explained having recourse to only the bremsstrahlung cascade process of consecutive electron-positron pair creation; i.e., the contribution of simultaneous double pair formation (and other cascade effects) is much smaller. The experimental peak areas are in reasonably good agreement with those predicted by Monte Carlo simulations done with the general-purpose radiation-tran sport code PENELOPE.
Resumo:
We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]
Resumo:
We present a new determination of the parity of the neutral pion via the double Dalitz decay pi(0) -> e(+)e(-)e(+)e(-). Our sample, which consists of 30511 candidate decays, was collected from K(L) -> pi(0)pi(0)pi(0) decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi(0) parity and place a limit on scalar contributions to the pi(0) -> e(+)e(-)e(+)e(-) decay amplitude of less than 3.3% assuming CPT conservation. The pi(0)gamma(*)gamma(*) form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase-space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi(0) -> e(+)e(-)e(+)e(-)) = (3.26 +/- 0.18) x 10(-5).
Resumo:
The experimental vertical electron detachment energy (VEDE) of aqueous fluoride, [F(-)(H(2)O)], is approximately 9.8 eV, but spectral assignment is complicated by interference between F(-) 2p and H(2)O 1b(1) orbitals. The electronic structure of [F(-)(H(2)O)] is analyzed with Monte Carlo and ab initio quantum-mechanical calculations. Electron-propagator calculations in the partial third-order approximation yield a VEDE of 9.4 eV. None of the Dyson orbitals corresponding to valence VEDEs consists primarily of F 2p functions. These results and ground-state atomic charges indicate that the final, neutral state is more appropriately described as [F(-)(H(2)O)(+)] than as [F(H(2)O)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431081]
Resumo:
We report cross sections for elastic collisions of low-energy electrons with the CH(2)O-H(2)O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH(2)O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.
Resumo:
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.
Resumo:
We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase transition is signalized both in the quantum and classical versions of the model. In the present contribution we show that not only the quantum ground state but also higher energy states, up to the energy of the corresponding classical separatrix orbit, ""sense"" the transition. We also show two types of one-to-one correspondences in this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum states and the changes in the density of energy levels; on the other hand, between the variation in the expected number of excitons for a given quantum state and the behavior of the corresponding classical orbit.