492 resultados para materials science
Resumo:
Composition and orientation effects on the final recrystallization texture of three coarse-grained Nb-containing AISI 430 ferritic stainless steels (FSSs) were investigated. Hot-bands of steels containing distinct amounts of niobium, carbon and nitrogen were annealed at 1250 degrees C for 2h to promote grain growth. In particular, the amounts of Nb in solid solution vary from one grade to another. For purposes of comparison, the texture evolution of a hot-band sheet annealed at 1030 degrees C for 1 min (finer grain structure) was also investigated. Subsequently, the four sheets were cold rolled up to 80% reduction and then annealed at 800 degrees C for 15 min. Texture was determined using X-ray diffraction and electron backscatter diffraction (EBSD). Noticeable differences regarding the final recrystallization texture and microstructure were observed in the four investigated grades. Results suggest that distinct nucleation mechanisms take place within these large grains leading to the development of different final recrystallization textures. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Oxide dispersion strengthened reduced-activation ferritic-martensitic steels are promising candidates for applications in future fusion power plants. Samples of a reduced activation ferritic-martensitic 9 wt.%Cr-oxide dispersion strengthened Eurofer steel were cold rolled to 80% reduction in thickness and annealed in vacuum for 1 h from 200 to 1350 degrees C to evaluate its thermal stability. Vickers microhardness testing and electron backscatter diffraction (EBSD) were used to characterize the microstructure. The microstructural changes were also followed by magnetic measurements, in particular the corresponding variation of the coercive field (H(c)), as a function of the annealing treatment. Results show that magnetic measurements were sensitive to detect the changes, in particular the martensitic transformation, in samples annealed above 850 degrees C (austenitic regime). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
High-purity niobium powder can be produced via the hydrogenation and dehydrogenation processes The present work aimed at the effect of temperature and cooling rate conditions on the niobium hydrogenation process using hydrogen gas The hydrogen contents of the materials were evaluated by weight change and chemical analysis X ray diffraction (XRD) was performed to identify and determine the lattice parameters of the formed hydride phases No hydrogenation took place under isothermal conditions only during cooling of the materials Significant hydrogenation occurred in the 500 C and 700 C experiments leading to the formation of a beta NbH(x) single phase material (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Copper coatings containing well-distributed Nb particles were obtained by co-electrodeposition in an acidic sulfate bath. Nb particle concentration in the bath was the most significant factor for the incorporation of Nb particles in copper, followed by stirring rate, whereas current density presented low significance. High Nb particle concentration and low stirring rate led to a higher incorporated Nb particle content. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to copper matrix grain refinement and increased with the increase of both current density and incorporated Nb particle volume fraction. The corrosion resistance of Cu-Nb composites in 0.5 wt.% H(2)SO(4) solution at room temperature was higher than that of pure copper and increased with the increase of the Nb content. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
CoB, CO(2)B, CoSi, Co(2)Si and CO(5)Si(2)B phases can be formed during heat-treatment of amorphous co-Si-B soft magnetic materials. Thus, it is important to determine their magnetic behavior as a function of applied field and temperature. In this study, polycrystalline single-phase samples of the above phases were produced via arc melting and heat-treatment under argon. The single-phase nature of the samples was confirmed via X-ray diffraction experiments. AC and DC magnetization measurements showed that Co(2)Si and CO(5)Si(2)B phases are paramagnetic. Minor amounts of either Co(2)Si or CoSi(2) in the CoSi-phase sample suggested a paramagnetic behavior of the CoSi-phase, however, it should be diamagnetic as shown in the literature. The diamagnetic behavior of the CoB phase was also confirmed. The paramagnetic behavior of CO(5)Si(2)B is for the first time reported. The magnetization results of the phase CO(2)B have a ferromagnetic signature already verified on previous NMR studies. A detailed set of magnetization measurements of this phase showed a change of the easy magnetization axis starting at 70K, with a temperature interval of about 13K at a very small field of 1 mT. As the strength of the field is increased the temperature interval is enlarged. The strength of field at which the magnetization saturates increases almost linearly as the temperature is increased above 70K. The room temperature total magnetostriction of the CO(2)B phase was determined to be 8 ppm at a field of 1T. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A niobium single crystal was subjected to equal channel angular pressing (ECAP) at room temperature after orienting the crystal such that [1 -1 -1] ayen ND, [0 1 -1] ayen ED, and [-2 -1 -1] ayen TD. Electron backscatter diffraction (EBSD) was used to characterize the microstructures both on the transverse and the longitudinal sections of the deformed sample. After one pass of ECAP the single crystal exhibits a group of homogeneously distributed large misorientation sheets and a well formed cell structure in the matrix. The traces of the large misorientation sheets match very well with the most favorably oriented slip plane and one of the slip directions is macroscopically aligned with the simple shear plane. The lattice rotation during deformation was quantitatively estimated through comparison of the orientations parallel to three macroscopic axes before and after deformation. An effort has been made to link the microstructure with the initial crystal orientation. Collinear slip systems are believed to be activated during deformation. The full constraints Taylor model was used to simulate the orientation evolution during ECAP. The result matched only partially with the experimental observation.
Resumo:
A set of stacked ribbon samples with the compositions Fe(85)Ga(15), Fe(78)Ni(7)Ga(15) and Fe(78)Co(7)Ga(15) were prepared. XRD on these ribbons show that the binary Fe(85)Ga(15) ribbon exhibits the disordered A2 structure where as the addition of Co and Ni leads to the appearance of an additional ordered DO(3) structure. A comparison of the ratio of the XRD-line intensities gave strong evidence of a (100) texture perpendicular to the ribbon surface. The optical studied microstructure supports these results because it shows a columnar grain growth parallel to the solidification direction-which is parallel to ribbon thickness. The highest magnetostriction was found for Fe(78)Ni(7)Ga(15) (370 ppm), while the Fe(78)Co(7)Ga(15) a smaller magnetostriction of 270 ppm was found. The enhancement of the magnetostriction is attributed to the (100) texture in these ribbons. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Although titanium and Ti-6Al-4V alloy have been widely used as dental materials, possible undesirable effects such as cytotoxic reactions and neurological disorder due to metal release led to the development of more corrosion resistant and V and Al free titanium alloys, containing Nb, Zr, Mo and Ta atoxic elements. Fluoride containing products used in the prevention of plaque formation and dental caries can affect the stability of the passive oxide films formed on the Ti alloys. In this work, the corrosion behaviour of the new Ti-23Ta alloy has been evaluated in artificial saliva of different pH and fluoride concentration using electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy study showed that the oxide film formed on the alloy in artificial saliva consists of an inner compact film and an outer porous layer. The corrosion resistance of Ti-23Ta alloy which is reduced by increasing F concentration or decreasing pH is related to the resistance of the inner compact layer. The presence of fluoride and low pH of the saliva enhance the porosity of the oxide film and its dissolution.
Resumo:
The thermal expansion anisotropy of the V(5)Si(3) and T(2)-phase of the V-Si-B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V(62.5)Si(37.5) (V5Si3 phase) and V(63)Si(12)B(25) (T(2)-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V(5)Si(3) phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 x 10(-6) K(-1) and 11.7 x 10(-6) K(-1), respectively. Similarly, the thermal expansion anisotropy value of the T(2)-phase is 0.9 with thermal expansion coefficients equal to 8.8 x 10(-6) K(-1) and 8.3 x 10(-6) K(-1) along the, a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti(5)Si(3) phase, the V(5)Si(3) phase presents lower thermal expansion anisotropy. The T(2)-phase present in the V-Si-B system exhibits low thermal expansion anisotropy, as the T(2)-phase of the Mo-Si-B, Nb-Si-B and W-Si-B systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work the Mn(5)Si(3) and Mn(5)SiB(2) phases were produced via arc melting and heat treatment at 1000 degrees C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn(5)Si(3) and near single-phase Mn(5)SiB(2) microstructures. The magnetic behavior of the Mn(5)Si(3) phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn(5)SiB(2) phase shows a ferromagnetic behavior presenting a saturation magnetization M(s) of about 5.35 x 10(5) A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The objective of this work was to evaluate the influence of bioglass additions on the sintering and mechanical properties of yttria-stabilized zirconia ceramics, Y-TZP Samples containing different bioglass additions, varying between 0 and 30 wt.%, were cold uniaxial pressed at 80 MPa and sintered in air at 1200 degrees C or 1300 degrees C for 120 min. Sintered samples were characterized by X-ray Diffractometry and Scanning Electron Microscopy. Hardness and fracture toughness were determined using Vickers indentation method. As a preliminary biological evaluation, in vitro cytotoxicity tests by Neutral Red Uptake method (using mouse connective tissue cells, NCTC clone L929 from ATCC bank) were realized to determine the cytotoxicity level of ZrO(2)-bioglass ceramics. The increasing of bioglass amount leads to the decreasing of relative density due to martensitic (tetragonal-monoclinic) transformation during cooling of the sintered samples. Y-TZP samples sintered at 1300 degrees C containing 5 wt.% of bioglass presented the best results. with high relative density, hardness and fracture toughness of 11.3 GPa and 6.1 MPa m(1/2), respectively. Furthermore, the un-cytotoxic behavior was observed in all sintering conditions and bioglass amounts used in this study. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.