131 resultados para macrophage microbicidal mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of the renin-angiotensin system (RAS) during murine lactation causes progressive renal injury, indicating a physiological action of angiotensin II on nephrogenesis. The nuclear factor NF-kappa B system is one of the main intracellular mediators of angiotensin II. We investigated whether inhibition of this system with pyrrolidine dithiocarbamate (PDTC) during rat nephrogenesis would lead to similar hypertension and renal injury as observed with RAS suppressors. Immediately after delivery, 32 Munich-Wistar dams, each nursing 6 male pups, were divided into 2 groups: C, untreated, and PDTC, receiving PDTC, 280 mg kg(-1) day(-1) orally, during 21 days. After weaning, the offspring were followed until 10 months of age without treatment. Adult rats that received neonatal PDTC exhibited stable hypertension and myocardial injury, without albuminuria. To gain additional insight into this process, the renal expression of RAS components and sodium transporters were determined by quantitative real-time PCR (qRT-PCR) at 3 and 10 months of life. Renal renin and angiotensinogen were upregulated at 3 and downregulated at 10 months of age, suggesting a role for early local RAS activation. Likewise, there was early upregulation of the proximal sodium/glucose and sodium/bicarbonate transporters, which abated later in life, suggesting that additional factors sustained hypertension in the long run. The conclusions drawn from the findings were as follows: (1) an intact NF-jB system during nephrogenesis may be essential to normal renal and cardiovascular function in adult life; (2) neonatal PDTC represents a new model of hypertension, lacking overt structural injury or functional impairment of the kidneys; and (3) hypertension in this model seems associated with early temporary activation of renal RAS and sodium transporters. Hypertension Research (2011) 34, 693-700; doi: 10.1038/hr. 2011.4; published online 17 February 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mononuclear phagocyte derived from B1b cells (B1CDP) has been described. As these cells migrate from the peritoneal cavity to non-specific inflammatory lesion sites and are highly phagocytic via Fc and mannose receptors, their microbicidal ability of these cells was investigated using the Coxiella burnetii cell infection model in vitro. In this report, the pattern of infection and C burnetii phase II survival in B1CDP phagosomes was compared with the pattern of infection of peritoneal macrophages from Xid mice (PM phi) and bone marrow derived macrophages (BMM phi). Infection was assessed by determining the large parasitophorous vacuole formation, the relative focus forming units and the quantification of DAPI (4`,6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy. When compared to macrophages, B1CDP are more permissive to the bacterial infection and less effective to kill them. Further, results suggest that IL-10 secreted by B1 cells are involved in their susceptibility to infection by C burnetti, since B1CDP from IL-10 KO mice are more competent to control C. burnetii infection than cells from wild type mice. These data contribute further to characterize B1CDP as a novel mononuclear phagocyte. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macro phage-derived neutrophil chemotactic factor (MNCF) is an alpha-galactoside-binding lectin, known to induce dexamethasone-insensitive neutrophil recruitment. We further characterized MNCF effects on neutrophils and showed that it shares with TNF-alpha the ability to delay apoptosis and to trigger degranulation. MNCF and TNF-alpha effects show similar kinetics and involve Src kinases and MAPKinases dependent pathways. They were, however, clearly distinguished, since the soluble TNF-receptor etanercept prevented TNF but not MNCF effects, while melibiose disaccharide inhibited MNCF but not TNF effects. Absorption of MNCF on detoxi-gel did not alter its properties, precluding an LPS contamination effect. By contrast, galectin-3 required LPS to activate neutrophils. Specific antibodies allowed to further demonstrate that MNCF and galectin-3 are two distinct molecules. Finally, MNCF- and IL-8-induced neutrophil activation differed by their kinetic and sensitivity to pertussis toxin. In conclusion, MNCF is a distinct neutrophil agonist, with pro-inflammatory activities involving its carbohydrate recognition domain. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the cardiovascular effects of noradrenaline (NA) microinjection into the hypothalamic supraoptic nucleus (SON) as well as the central and peripheral mechanisms involved in their mediation. Microinjections of NA 1, 3, 10, 30 or 45 nmol/100 nL into the SON caused dose-related pressor and bradycardiac response in unanesthetized rats. The response to NA 10 nmol was blocked by SON pretreatment with 15 nmol of the alpha(2)-adrenoceptor antagonist RX821002 and not affected by pretreatment with equimolar dose of the selective alpha(1)-adrenoceptor antagonist WB4101, suggesting that local alpha(2)adrenoceptors mediate these responses. Pretreatment of the SON with the nonselective beta-adrenoceptor antagonist propranolol 15 nmol did not affect the pressor response to NA microinjection of into the SON. Moreover, the microinjection of the 100 nmol of the selective alpha(1)-adrenoceptor agonist methoxamine (MET) into the SON did not cause cardiovascular response while the microinjection of the selective alpha(2)adrenoceptor agonists BHT920 (BHT, 100 nmol) or clonidine (CLO, 5 nmol) caused pressor and bradycardiac responses, similar to that observed after the microinjection of NA. The pressor response to NA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium and was blocked by intravenous pretreatment with the V(1)-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP, suggesting an involvement of circulating vasopressin in this response. In conclusion, our results suggest that pressor responses caused by microinjections of NA into the SON involve activation of local alpha(2)-adrenoceptor receptors and are mediated by vasopressin release into circulation. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylloquinone (vitamin K-1, VK1) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK1 on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK1 (0.5-20 mg kg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK1 were dose-dependent. On the other hand, intravenous injection of VK1 did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N-G-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mg kg(-1)) reduced both the increase and decrease in blood pressure induced by VK1 (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK1. However, VK1-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK1 induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK1 involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mu g/paw) and the directly acting hypernociceptive mediator, prostaglandin E-2 (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalininduced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)- induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K-ATP(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N-G-monomethyl-L-arginine acetate), guanylate cyclase] 1H-(1,2,4)-oxadiazolo(4,2-alpha) quinoxalin-1- one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vocalization generated by the application of a noxious stimulus is an integrative response related to the affective-motivational component of pain. The rostral ventromedial medulla (RVM) plays an important role in descending pain modulation, and opiates play a major role in modulation of the antinociception mediated by the RVM. Further, it has been suggested that morphine mediates antinociception indirectly, by inhibition of tonically active GABAergic neurons. The current study evaluated the effects of the opioids and GABA agonists and antagonists in the RVM on an affective-motivational pain model. Additionally, we investigated the opioidergic-GABAergic interaction in the RVM in the vocalization response to noxious stimulation. Microinjection of either morphine (4.4 nmo1/0.2 mu l) or bicuculline (0.4 nmo1/0.2 mu l) into the RVM decreased the vocalization index, whereas application of the GABA(A) receptor agonist, musci-mol (0.5 nmo1/0.2 mu l) increased the vocalization index during noxious stimulation. Furthermore, prior microinjection of either the opioid antagonist naloxone (2.7 nmo1/0.2 mu l) or muscimol (0.25 nmo1/0.2 mu l) into the RVM blocked the reduction in vocalization index induced by morphine. These observations suggest an antinociceptive and pro-nociceptive role of the opioidergic and GABAergic neurotransmitters in the RVM, respectively. Our data show that opioids have an antinociceptive effect in the RVM, while GABAergic neurotransmission is related to the facilitation of nociceptive responses. Additionally, our results indicate that the antinociceptive effect of the opioids in the RVM could be mediated by a disinhibition of tonically active GABAergic interneurons in the downstream projection neurons of the descending pain control system; indicating an interaction between the opioidergic and GABAergic pathways of pain modulation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphe system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphe nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphe nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphe nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. (c) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we evaluated the role of ionotropic glutamate receptors and purinergic P2 receptors in the caudal commissural NTS (cNTS) on the modulation of the baseline respiratory frequency (fR), and on the tachypneic response to chemoreflex activation in awake rats. The selective antagonism of ionotropic glutamate receptors with kynurenic acid (2 nmol/50 nl) in the cNTS produced a significant increase in the baseline fR but no changes in the tachypneic response to chemoreflex activation. The selective antagonism of purinergic P2 receptors by PPADS (0.25 nmol/50 nl) in the cNTS produced no changes in the baseline fR or in the tachypneic response to chemoreflex activation. The data indicate that glutamate acting on ionotropic receptors in the cNTS plays a inhibitory role on the modulation of the baseline fR but had no effect on the tachypneic response to chemoreflex activation, while ATP acting on P2 receptors in the cNTS plays no major role in the modulation of the baseline fR or in the tachypneic response to chemoreflex activation. We suggest that neurotransmitters other than L-glutamate and ATP are involved in the processing of the tachypneic response of the chemoreflex at the cNTS level. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-L-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 pm) containing the cNTS were pre-incubated with ATP (500 mu M; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39 +/- 3 vs 16 +/- 14 mm Hg; f(R): 75 +/- 14 vs 4 +/- 3 cpm; V(E): 909 159 vs 77 39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62 +/- 7 vs 101 +/- 10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.