131 resultados para lifting scheme
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with nonlinear geometric plates in the context of von Karman`s theory. The formulation is written such that only the boundary in-plane displacement and deflection integral equations for boundary collocations are required. At internal points, only out-of-plane rotation, curvature and in-plane internal force representations are used. Thus, only integral representations of these values are derived. The nonlinear system of equations is derived by approximating all densities in the domain integrals as single values, which therefore reduces the computational effort needed to evaluate the domain value influences. Hyper-singular equations are avoided by approximating the domain values using only internal nodes. The solution is obtained using a Newton scheme for which a consistent tangent operator was derived. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article presents a BEM formulation developed particularly for analysis of plates reinforced by rectangular beams. This is an extended version of a Previous paper that only took into account bending effects. The problem is now re-formulated to consider bending and membrane force effects. The effects of the reinforcements are taken into account by using a simplified scheme that requires application of ail initial stress field to locally correct the bending and stretching stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. To reduce the number of degrees of freedom related to the presence of the reinforcement, the proposed model was simplified to consider only bending and stretching rigidities in the direction of the beams. The complete model can be recovered by applying all six internal force correctors, corresponding to six degrees of freedom per node. Examples are presented to confirm the accuracy of the formulation and to illustrate the level of simplification introduced by this strong reduction in the number of degrees of freedom. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a BEM formulation developed to analyse reinforced plate bending. The reinforcements are formulated using a simplified scheme based on applying an initial moment field adopted to locally correct the stiffness of the reinforcement regions. The domain integrals due to the presence of the reinforcements are then transformed to the reinforcement/plate interface. The increase in system stiffness due to the reinforcements can be taken into account independently for each coefficient. Thus, one can conveniently reduce the number of degrees of freedom required in considering the reinforcement. Only one degree-of-freedom is required at each internal node when taking into account only the flexural stiffness of beams. Examples are presented to confirm the accuracy of the formulation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This technical note discusses the possibility of using a more simplified scheme to estimate the plastic multiplier when some material shows volume changes, e.g. soil, balsa wood foam and other similar materials. Two procedures regarding volume changes during the plastic phase are discussed here. The first one is the classic procedure applied to non-associative plasticity, for which a Drucker-Prager-like surface is adopted to represent the plastic potential. For the second procedure, the plastic potential is not explicitly known, however, its orthogonal direction is chosen respecting a plastic volume change parameter similar to Poisson`s ratio. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.
Resumo:
This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.
Resumo:
In this study, further improvements regarding the fault location problem for power distribution systems are presented. The proposed improvements relate to the capacitive effect consideration on impedance-based fault location methods, by considering an exact line segment model for the distribution line. The proposed developments, which consist of a new formulation for the fault location problem and a new algorithm that considers the line shunt admittance matrix, are presented. The proposed equations are developed for any fault type and result in one single equation for all ground fault types, and another equation for line-to-line faults. Results obtained with the proposed improvements are presented. Also, in order to compare the improvements performance and demonstrate how the line shunt admittance affects the state-of-the-art impedance-based fault location methodologies for distribution systems, the results obtained with two other existing methods are presented. Comparative results show that, in overhead distribution systems with laterals and intermediate loads, the line shunt admittance can significantly affect the state-of-the-art methodologies response, whereas in this case the proposed developments present great improvements by considering this effect.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Resumo:
This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.