221 resultados para functional response
Resumo:
Introduction: Cerebral ischemia is an important cause of brain lesion in humans. The target in research has been the ischemic core or the penumbra zones; little attention has been given to areas outside the core or the penumbra but connected with the primary site of injury. Objective: Evaluate the laminar response of a subpopulation of gabaergic cells, those that are parvalbumin (PV) positive and the astrocytes through the expression of the glial transporter GLT1 on the contralateral cortex to an ischemic core. Methodology: For this purpose we used the medial cerebral artery occlusion model in rats. The artery was occluded for 90 minutes and the animals were sacrificed at 24 and 72 hours post-ischemia. The brains were removed, cut in a vibratome at 50 microns and incubated with the primary antibodies against PV or GLT1. Sections were developed using the vectastain Kit. In control tissue the primary antibody was omitted. Results: When compared with control animals, treated ones show a decrease in the expression of GLT1, especially in layers III and IV of the contralateral cortex to the ischemic core. PV positive cells increases in layers II and V. Conclusion: Increases in the expression of PV cells could correspond to an adaptation associated with glutamate increases in the synaptic compartment. These increases may be due to decreases in the expression of GLT1 transporter, that could not remove the glutamate present in the synaptic cleft, generating hyperactivity in the contralateral cortex. These changes could represent an example of neuronal and glial plasticity in remote areas to an ischemic core but connected to the primary site of injury.
Resumo:
We describe the reproductive period. fecundity, and average size at the onset of functional maturity of female Aegla franca, the northernmost distributed aeglid species. The reproductive period is markedly seasonal and takes place front May (austral mid-autumn) to August (late winter). Ovigerous females appear quite abruptly in the population by May, and this condition is observed in all adult females sampled regardless of their size. The average size at the onset of functional maturity in females, at which 50% of the females sampled during the reproductive period were considered adults, was 12.75 mm CL. The smallest post-ovigerous female measured 12.06 mm carapace length (CL). Mean fecundity (+/- S.D.) from 41 females bearing early and intermediate eggs was 129.1 +/- 32.2 and corresponded to a mean female CL of 14.11 mm. The elliptical-shaped eggs exhibited significant increase in size along the development stages. The third pair of pleopods bore higher number of eggs than the others. Compiled information regarding the reproductive period reported for aeglids revealed all increase in the breeding period length with latitude. The reproductive period tends to be shorter in localities under larger rainfall variation and smaller temperature variability than in sites with opposite climate conditions. Eggs tend to be fewer in number and larger in size towards lower latitudes. We present an hypothesis that stream water velocity might act as a major selective pressure during the early life history of fluvial aeglids with direct effect on the reproductive pattern.
Resumo:
Background: Gap junction intercellular communication (GJIC) is considered to play a role in the regulation of homeostasis because it regulates important processes, such as cell proliferation and cell differentiation. A reduced or lost GJIC capacity has been observed in solid tumors and studies have demonstrated that GJIC restoration in tumor cells contribute to reversion of the transformed phenotype. This observation supports the idea that restoration of the functional channel is essential in this process. However, in the last years, reports have proposed that just the increase in the expression of specific connexins can contribute to reversion of the malign phenotype in some tumor cells. In the present work, we studied the effects of exogenous Connexin 43 (Cx43) expression on the proliferative behavior and phenotype of rat hepatocarcinoma cells. Results: The exogenous Cx43 did not increase GJIC capacity of transfected cells, but it was critical to decrease the cell proliferation rate as well as reorganization of the actin filaments and cell flattening. We also observed more adhesion capacity to substrate after Cx43 transfection. Conclusion: Cx43 expression leads to a decrease of the growth of the rat hepatocellular carcinoma cells and it contributes to the reversion of the transformed phenotype. These effects were independent of the GJIC and were probably associated with the phosphorylation pattern changes and redistribution of the Cx43 protein.
Resumo:
The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (Mempty set) subsets, namely small peritoneal Mempty set (SPM) and large peritoneal Mempty set (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for beta-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-gamma stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal Mempty set subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.
Resumo:
The pivotal role of spleen CD4(+) T cells in the development of both malaria pathogenesis and protective immunity makes necessary a profound comprehension of the mechanisms involved in their activation and regulation during Plasmodium infection. Herein, we examined in detail the behaviour of non-conventional and conventional splenic CD4(+) T cells during P. chabaudi malaria. We took advantage of the fact that a great proportion of CD4(+) T cells generated in CD1d(-/-) mice are I-A(b)-restricted (conventional cells), while their counterparts in I-Ab(-/-) mice are restricted by CD1d and other class IB major histocompatibility complex (MHC) molecules (non-conventional cells). We found that conventional CD4(+) T cells are the main protagonists of the immune response to infection, which develops in two consecutive phases concomitant with acute and chronic parasitaemias. The early phase of the conventional CD4(+) T cell response is intense and short lasting, rapidly providing large amounts of proinflammatory cytokines and helping follicular and marginal zone B cells to secrete polyclonal immunoglobulin. Both TNF-alpha and IFN-gamma production depend mostly on conventional CD4(+) T cells. IFN-gamma is produced simultaneously by non-conventional and conventional CD4(+) T cells. The early phase of the response finishes after a week of infection, with the elimination of a large proportion of CD4(+) T cells, which then gives opportunity to the development of acquired immunity. Unexpectedly, the major contribution of CD1d-restricted CD4(+) T cells occurs at the beginning of the second phase of the response, but not earlier, helping both IFN-gamma and parasite-specific antibody production. We concluded that conventional CD4(+) T cells have a central role from the onset of P. chabaudi malaria, acting in parallel with non-conventional CD4(+) T cells as a link between innate and acquired immunity. This study contributes to the understanding of malaria immunology and opens a perspective for future studies designed to decipher the molecular mechanisms behind immune responses to Plasmodium infection.
Resumo:
Background: The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives: This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods: Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 mu g of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 mu g of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results: Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 mu g per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions: The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
Azimuthal angle (Delta phi) correlations are presented for charged hadrons from dijets for 0.4 < p(T)< 10 GeV/c in Au+Au collisions at root s(NN)=200 GeV. With increasing p(T), the away-side distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed ""head"" region centered at Delta phi similar to pi and an enhanced ""shoulder"" region centered at Delta phi similar to pi +/- 1.1. The p(T) spectrum for the head region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the shoulder region is independent of centrality and trigger p(T), which offers constraints on energy transport mechanisms and suggests that it contains the medium response to energetic jets.
Resumo:
We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.
Resumo:
We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional pi-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (beta-carotene and beta-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for beta-apo-8'-carotenal, which was attributed to a overlapping of I(I)B(u) +-like and 2(I)Ag(-)-like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590157]
Resumo:
We report experimental and theoretical studies of the two-photon absorption spectrum of two nitrofuran derivatives: nitrofurantoine, (1-(5-nitro-2-furfurilideneamine)-hidantoine) and quinifuryl, 2-(5`-nitro-2`-furanyl) ethenyl-4-{N-[4`-(N,N-diethylamino)-1`-methylbutyl]carbamoyl} quinoline. Both molecules are representative of a family of 5-nitrofuran-ethenyl-quinoline drugs that have been demonstrated to display high toxicity to various species of transformed cells in the dark. We determine the two-photon absorption cross-section for both compounds, from 560 to 880 nm, which present peak values of 64 GM for quinifuryl and 20 GM for nitrofurantoine (1 GM = 1 x 10(-50) cm(4).s.photon(-1)). Besides, theoretical calculations employing the linear and quadratic response functions were carried out at the density functional theory level to aid the interpretations of the experimental results. The theoretical results yielded oscillator strengths, two-photon transition probabilities, and transition energies, which are in good agreement with the experimental data. A higher number of allowed electronic transitions was identified for quinifuryl in comparison to nitrofurantoine by the theoretical calculations. Due to the planar structure of both compounds, the differences in the two-photon absorption cross-section values are a consequence of their distinct conjugation lengths. (c) 2011 American Institute of Physics. [doi:10.1063/1.3514911]