113 resultados para evolutionary genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogenetic relationships and divergence times for 10 populations of the three recognized ""species"" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229 bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E divaricatus from a clade comprising E amathites and E nanuzae. Three populations of E divaricatus, which occurs along the western bank of Rio S (a) over tildeo Francisco, were consistently grouped together. Oil the east bank of the river, E amathites and E nanuzae from state of Bahia were recovered as the sister group of E nanuzae populations from state of Minas Gerais. The paraphyly of E nanuzae and the high divergence levels among populations of E divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5 my ago, and E. amathites from E nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5 my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Eigenmannia comprises several species groups that display a surprising variety of diploid chromosome numbers and sex-determining systems. In this study, hypotheses regarding phylogenetic relationships and karyotype evolution were investigated using a combination of molecular and cytogenetic methods. Phylogenetic relationships were analyzed for 11 cytotypes based on sequences from five mitochondrial DNA regions. Parsimony-based character mapping of sex chromosomes confirms previous suggestions of multiple origins of sex chromosomes. Molecular cytogenetic analyses involved chromosome painting using probes derived from whole sex chromosomes from two taxa that were hybridized to metaphases of their respective sister cytotypes. These analyses showed that a multiple XY system evolved recently (<7 mya) by fusion. Furthermore, one of the chromosomes that fused to form the neo-Y chromosome is fused independently to another chromosome in the sister cytotype. This may constitute an efficient post-mating barrier and might imply a direct function of sex chromosomes in the speciation processes in Eigenmannia. The other chromosomal sex-determination system investigated is shown to have differentiated by an accumulation of heterochromatin on the X chromosome. This has occurred in the past 0.6 my, and is the most recent chromosomal sex-determining system described to date. These results show that the evolution of sex-determining systems can proceed very rapidly. Heredity (2011) 106, 391-400; doi:10.1038/hdy.2010.82; published online 23 June 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calyptommatus and Nothobachia genera of gymnophthalmid lizards are restricted to sandy open habitats on Sao Francisco River margins, northeastern Brazil. Phylogenetic relationships and geographic distribution of the four recognized species of Calyptommatus were analyzed from partial mitochondrial cyt b, 12S, and 16S rRNA genes sequencing, taking allopatric populations of the monotypic Nothobachia ablephara as the outgroup. In Calyptommatus a basal split separated C. sinebrachiatus, a species restricted to the eastern bank of the river, from the three other species. In this clade, C. confusionibus, found on western margin, was recovered as the sister group of the two other species, C. leiolepis and C. nicterus, from opposite margins. According to approximate date estimations, C. sinebrachiatus would have separated from the other congeneric species by 4.4-6.5 my, and C. nicterus, also from eastern bank, would be diverging by 1.8-2.6 my from C. leiolepis, the sister species on the opposite margin. C. confusionibus and C. leiolepis, both from western sandy areas, would be differentiating by 2.8-5.0 my. Divergence times of about 3.0-4.0 my were estimated for allopatric populations of Nothobachia restricted to western margin. Significant differences in 16S rRNA secondary structure relatively to other vertebrates are reported. Distinct evolutionary patterns are proposed for different taxa in those sandy areas, probably related to historical changes in the course of Sao Francisco River. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Eigenmannia (Teleostei: Gymnotiformes), a widely distributed fish genus from the Neotropical region, presents very complex morphological patterns and many taxonomic problems. It is suggested that this genus harbors a species complex that is hard to differentiate using only morphological characteristics. As a result, many species of Eigenmannia may be currently gathered under a common name. With the objective of providing new tools for species characterization in this group, an analysis of the polymorphism of DNA inter-simple sequence repeats (ISSR), obtained by single primer amplification reaction (SPAR), combined with karyotype identification, was carried out in specimens sampled from populations of the Upper Parana, So Francisco and Amazon river basins (Brazil). Specific ISSR patterns generated by primers (AAGC)(4) and (GGAC)(4) were found to characterize the ten cytotypes analyzed, even though the cytotypes 2n = 38 and 2n = 38 XX:XY, from the Upper Parana basin, share some ISSR amplification patterns. The geographical distribution of all Eigenmannia specimens sampled was inferred, showing the cytotype 2n = 31/2n = 32 as the most frequent and largely distributed in the Upper Parana basin. The cytotype 2n = 34 was reported for the first time in the genus Eigenmania, restricted to the So Francisco basin. Polymorphic ISSR patterns were also detected for each cytotype. Considering our results and the data reported previously in the literature, it is suggested that many of the forms of Eigenmannia herein analyzed might be regarded as different species. This work reinforces the importance of employing diverse approaches, such as molecular and cytogenetic characterization, to address taxonomic and evolutionary issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neotropical forests have brought forth a large proportion of the world`s terrestrial biodiversity, but the underlying evolutionary mechanisms and their timing require further elucidation. Despite insights gained from phylogenetic studies, uncertainties about molecular clock rates have hindered efforts to determine the timing of diversification processes. Moreover, most molecular research has been detached from the extensive body of data on Neotropical geology and paleogeography. We here examine phylogenetic relationships and the timing of speciation events in a Neotropical flycatcher genus (Myiopagis) by using calibrations from modern geologic data in conjunction with a number of recently developed DNA sequence dating algorithms and by comparing these estimates with those based on a range of previously proposed molecular clock rates. We present a well-supported hypothesis of systematic relationships within the genus. Our age estimates of Myiopagis speciation events based on paleogeographic data are in close agreement with nodal ages derived from a ""traditional"" avian mitochondrial 2%/My clock, while contradicting other clock rates. Our comparative approach corroborates the consistency of the traditional avian mitochondrial clock rate of 2%/My for tyrant-flycatchers. Nevertheless, our results argue against the indiscriminate use of molecular clock rates in evolutionary research and advocate the verification of the appropriateness of the traditional clock rate by means of independent calibrations in individual studies. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acestrorhynchus is the sole genus of the family Acestrorhynchidae which includes 14 species currently recognized as valid. Species of Acestrorhynchus comprise small-to-medium sized piscivorous fishes and have been traditionally grouped on the basis of well-defined color patterns. A recent phylogeny, based on morphological characters, could not resolve the phylogenetic affinities of A. heterolepis and the relationships among the species of the clade formed by A. abbreviatus, A. altus, A. falcatus, A. lacustris, and A. pantaneiro. The simultaneous analysis of two mitochondrial genes (16S and ATP synthase subunits 6 and 8) and one nuclear intron (S7) was able to resolve the latter clade, but the position of A. heterolepis remained unresolved. The combination of the molecular and morphological data sets in a total evidence analysis resulted in a well-resolved hypothesis regarding the phylogenetic relationships of Acestrorhynchus species. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Mbo I (Mbo-A, Mbo-M, Mbo-C(1), Mbo-C(2) and Mbo-C(3)) and Hinf I (Hinf-1 to Hinf-5) patterns were observed in Apis mellifera samples after restriction of a 485 bp fragment of the mitochondrial cytochrome-b (cyt-b) gene. Associating the cyt-b Restriction fragment length polymorphism (RFLP) pattern of each sample to its respective previously established COI-COII (Dra I sites) pattern, five restriction patterns (Mbo-C(1), Mbo-C(2), Mbo-C(3), Hinf-1 and Hinf-4) were observed in samples of maternal origin associated to the evolutionary branch C. No deletions or insertions were observed and the nucleotide substitution rate was estimated at 5.4%. Higher nucleotide diversity was observed among the branch C-haplotypes when compared with A and M lineages. Further studies are needed to confirm if the cyt-b + COI-COII haplotypes help to assign certain phylogeographic patterns to the branch C and to clarify phylogenetic relationships among A. mellifera subspecies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer`s Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coleodactylus amazonicus, a small leaf-litter diurnal gecko widely distributed in Amazon Basin has been, considered a single species with no significant morphological differences between populations along its range. A recent molecular study, however, detected large genetic differences between populations of central Amazonia and those in the easternmost part of the Amazon Basin, suggesting the presence of taxonomically unrecognised diversity. In this study, DNA sequences of three mitochondrial (165, cytb, and ND4) and two nuclear genes (RAG-1, c-mos) were used to investigate whether the species currently identified as C. amazonicus contains morphologically cryptic species lineages. The present phylogenetic analysis reveals further genetic subdivision including at least five potential species lineages, restricted to northeastern (lineage A), southeastern (lineage B), central-northern (lineage E) and central-southern (lineages C and D) parts of Amazon Basin. All clades are characterized by exclusive groups of alleles for both nuclear genes and highly divergent mitochondrial haplotype clades, with corrected pairwise net sequence divergence between sister lineages ranging from 9.1% to 20.7% for the entire mtDNA dataset. Results of this study suggest that the real diversity of ""C. amazonicus"" has been underestimated due to its apparent cryptic diversification. (C) 2009 Elsevier Inc. All rights reserved.