154 resultados para direct synthesis, microreactor, hydrogen peroxide, simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work the microbial decontamination of some medicinal plants by plasma treatment using oxygen gas or a mixture of oxygen and hydrogen peroxide was investigated. The efficiency of the decontamination process was analyzed by the count of heterotropic microorganisms and pathogenic research. The results showed a reduction in the microorganism number such as 3 and 4 logarithmic cycles for ginkgo and artichoke, while it was not efficient for samples containing hard and thick cells, and mucilage, such as guarana and chamomile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, chemometric methods are reported as potential tools for monitoring the authenticity of Brazilian ultra-high temperature (UHT) milk processed in industrial plants located in different regions of the country. A total of 100 samples were submitted to the qualitative analysis of adulterants such as starch, chlorine, formal. hydrogen peroxide and urine. Except for starch, all the samples reported, at least, the presence of one adulterant. The use of chemometric methodologies such as the Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) enabled the verification of the occurrence of certain adulterations in specific regions. The proposed multivariate approaches may allow the sanitary agency authorities to optimise materials, human and financial resources, as they associate the occurrence of adulterations to the geographical location of the industrial plants. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 +/- 0.004 g) in relation to control (E(max) = 0.18 +/- 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 +/- 0.009 g) in relation to control (E(max) = 0.38 +/- 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 +/- 0.004 g) and contraction (E(max) = 0.34 +/- 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 +/- 0.012 g) and contraction (E(max) = 0.42 +/- 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 +/- 0.004 g) or contraction (E(max) = 0.54 +/- 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 +/- 435 U) in relation to control (10 455 +/- 303 U). SC236 reduced the fluorescence in contralateral samples (8250 +/- 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2)(-) derived from COX-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here. we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we studied the oxidation of the azo dye Disperse orange 3 (DO3) by hydrogen peroxide, catalyzed by 5,10,15, 20-tetrakis(4-N-methylpyridyl)porphyrin iron(III) chloride immobilized onto montmorillonite K10, FeP-K10. Results showed that the FeP-K10/H2O2 system is efficient for discoloration of the DO3 dye, especially at pH 3.0. The catalyst was shown to be relatively stable and could be recycled many times, leading to good yields. DO3 oxidation products were analyzed by gas chromatography and mass spectrometry, being 4-nitroaniline the main product. Tert-butylhydroperoxide and iodosylbenzene were also used as oxidants, giving rise to 4-nitroaniline as product too. The studied system is a good biomimetic model of oxidative enzymes, being a promising discoloring agent for azo dyes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the catalytic activity of manganese and iron porphyrins, Mn and Fe(TFPP)Cl, covalently immobilized on the aminofunctionalized supports montmorillonite K-10 (MontX) and silica (SilX), where X= 1 or 2 represents the length of the organic chain (""arms"") binding the metalloporphyrin to the support. These systems were characterized by UV-vis and Electronic Paramagnetic Resonance (EPR), and they were used as catalysts in the oxidation of carbamazepine (CBZ) by the oxidants iodosylbenzene (PhIO) and hydrogen peroxide. The manganese porphyrin (MnP) catalysts proved to be efficient and selective for the epoxide, the main CBZ metabolite in natural systems. MnMont1 was an excellent catalyst when PhIO was used as oxidant, even better than the same MnP in homogeneous system. Supports bearing short ""arms"" led to the best yields. Although H2O2 is an environmentally friendly oxidant, low product yields were obtained when it was employed in CBZ oxidation. Fe(TFPP)CI immobilized on aminofunctionalized supports was not an efficient catalyst, probably due to the presence of Fe(H) species in the matrix, which led to the less reactive intermediate PFe(IV)(O). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the ability of pioneer and late-successional species to adapt to a strong light environment in a reforestation area, we examined the activities of antioxidant enzymes in relation to photosystem chlorophyll a fluorescence and photosynthetic pigment concentration for eight tropical tree species grown under 100% (sun) and 10% (shade) sunlight irradiation. The pioneer (early-succession) species (PS) were Cecropia pachystachya, Croton urucurana, Croton floribundus and Schinus terebinthifolius. The non-pioneer (late succession) species (LS) were Hymenaea courbaril L var. stilbocarpa, Esenbeckia leiocarpa, Cariniana legalis and Tabebuia roseo-alba. We observed a greater decline in the ratio of variable to maximum chlorophyll a fluorescence (F(v)/F(m)) under full sunlight irradiation in the late-successional species than in the pioneer species. The LS species most sensitive to high irradiance were C. legalis and H. courbaril. In LS species, chlorophyll a, chlorophyll b and total chlorophyll concentrations were higher in the shade-grown plants than in plants that developed under full sunlight, but in the PS species C. floribundus and C. pachystachya, we did not observe significant changes in chlorophyll content when grown in the two contrasting environments. The carotenoids/total chlorophyll ratio increased significantly when plants developed under high-sunlight irradiation, but this response was not observed in the PS species S. terebinthifolius and C. pachystachya. The improved performance of the pioneer species in high sunlight was accompanied by an increase in superoxide dismutase (SOD. EC 1.15.1.1) activity, though no light-dependent increase in the activity of ascorbate peroxidase (APX. EC 1.11.1.11) was observed. The activity of catalase (CAT, EC 1.11.1.6) was reduced by high irradiation in both pioneer and late-successional species. Our results show that pioneer species perform better under high-sunlight irradiation than late-successional species, as indicated by increased SOD activity and a higher F IF,, ratio. C. legalis was the LS species most susceptible to photoinhibition under full sunlight conditions. These results suggest that pioneer plants have more potential tolerance to photo-oxidative damage than late-successional species associated with the higher SOD activity found in pioneer species. Reduced photoinhibition in pioneer species probably results from their higher photosynthetic capacities, as has been observed in a previous survey carried out by our group. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss-or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi. J. Leukoc. Biol. 86: 989-998; 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we evaluated the acute effects of central NAC administration on baroreflex in juvenile SHR and Wistar Kyoto (WKY) rats. Male SHR and WKY rats (8 10 weeks old) were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. After basal MAP and HR recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus). Baroreflex was evaluated before, 5, 15, 30 and 60 minutes after NAC injection into the 4th V. Vehicle treatment did not change baroreflex responses in WKY and SHR. Central NAC slightly but significantly increased basal HR at 15 minutes and significantly reduced PHE-induced increase in MAP 30 and 60 minutes after NAC injection (p < 0.05) in WKY rats. In relation to SHR, NAC decreased HR range 15 and 30 minutes after its administration. In conclusion, acute NAC into the 4th V does not improve baroreflex in juvenile SHR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - We hypothesized that reactive oxygen species ( ROS) contribute to progression of aortic valve ( AV) calcification/ stenosis. Methods and Results - We investigated ROS production and effects of antioxidants tempol and lipoic acid ( LA) in calcification progression in rabbits given 0.5% cholesterol diet +10(4) IU/d Vit.D-2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/ osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P) H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P <= 0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P) H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA. Conclusions - Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocrotaline (MCT) is a pyrrolizidine alkaloid found in a variety of plants. The main symptoms of MCT toxicosis in livestock are related to hepato- and nephrotoxicity; in rodents and humans, the induction of a pulmonary hypertensive state that progresses to cor pulmonale has received much attention. Although studies have shown that MCT can cause effects on cellular functions that would be critical to those of lymphocytes/macrophages during a normal immune response, no immunotoxicological study on MCT have yet to ever be performed. Thus, the aim of the present study was to evaluate the effect of MCT on different branches of the immune system using the rat - which is known to be sensitive to the effects of MCT - as the model. Rats were treated once a day by gavage with 0.0, 0.3, 1.0, 3.0, or 5.0 mg MCT/kg for 14 days, and then any effects of the alkaloid on lymphoid organs, acquired immune responses, and macrophage activity were evaluated. No alterations in the relative weight of lymphoid organs were observed; however, diminished bone marrow cellularity in rats treated with the alkaloid was observed. MCT did not affect humoral or cellular immune responses. When macrophages were evaluated, treatments with MCT caused no significant alterations in phagocytic function or in hydrogen peroxide (H(2)O(2)) production; however, the MCT did cause compromised nitric oxide (NO) release by these cells.