79 resultados para control of uncertain nonlinear systems
Resumo:
The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers` instructions, associated or not with a hydrophobic layer of unfilled resin. Materials and Methods: Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, lvoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37 C for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey`s post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. Results: The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 +/- 7.9; AdheSE: 14.5 +/- 7.1; Xeno III: 12.8 +/- 7.7; I Bond: 9.5 +/- 5.8; Bond Force: 17.5 +/- 4.1; Futurabond: 7.7 +/- 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 +/- 4.9; AdheSE 1.6 +/- 1.6; Xeno III: 9.0 +/- 3.8; I Bond: 3.0 +/- 1.5; Bond Force: 14 +/- 3.9; Futurabond: 8.8 +/- 3.8). Failure mode was predominantly adhesive. Conclusion: The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.
Resumo:
Objective: Aggregatibacter actinomycetemcomitans is an oral Gram-negative bacterium that contributes to periodontitis progression. Isolated antigens from A. actinomycetemcomitans could be activating innate immune cells through Toll-like receptors (TLRs). In this study, we evaluated the role of TLR4 in the control of A. actinomycetemcomitans infection. Material and Methods: We examined the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR4(-/-) mice. The production of cytokines was evaluated by ELISA. The bacterial load was determined by counting the number of colony-forming units per gram of tissue. Results: The results showed that TLR4-deficient mice developed less severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly lower bone loss and inflammatory cell migration to periodontal tissues. However, the absence of TLR4 facilitated the A. actinomycetemcomitans dissemination. Myeloperoxidase activity was diminished in the periodontal tissue of TLR4(-/-) mice. We observed a significant reduction in the production of tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 beta in the periodontal tissue of TLR4(-/-) mice. Conclusion: The results of this study highlighted the role of TLR4 in controlling A. actinomycetemcomitans infection.
Resumo:
Background: It remains unclear as to whether or not dental bleaching affects the bond strength of dentin/resin restoration. Purpose: To evaluated the bond strength of adhesive systems to dentin submitted to bleaching with 38% hydrogen peroxide (HP) activated by LED-laser and to assess the adhesive/dentin interfaces by means of SEM. Study design: Sixty fragments of dentin (25 mm(2)) were included and divided into two groups: bleached and unbleached. HP was applied for 20 s and photoactivated for 45 s. Groups were subdivided according to the adhesive systems (n = 10): (1) two-steps conventional system (Adper Single Bond), (2) two-steps self-etching system (Clearfil standard error (SE) Bond), and (3) one-step self-etching system (Prompt L-Pop). The specimens received the Z250 resin and, after 24 h, were submitted to the bond strength test. Additional 30 dentin fragments (n = 5) received the same surface treatments and were prepared for SEM. Data were analyzed by ANOVA and Tukey`s test (alpha = 0.05). Results: There was significant strength reduction in bleached group when compared to unbleached group (P < 0.05). Higher bond strength was observed for Prompt. Single Bond and Clearfil presented the smallest values when used in bleached dentin. SEM analysis of the unbleached specimens revealed long tags and uniform hybrid layer for all adhesives. In bleached dentin, Single Bond provided open tubules and with few tags, Clearfil determined the absence of tags and hybrid layer, and Prompt promoted a regular hybrid layer with some tags. Conclusions: Prompt promoted higher shear bond strength, regardless of the bleaching treatment and allowed the formation of a regular and fine hybrid layer with less deep tags, when compared to Single Bond and Clearfil. Microsc. Res. Tech. 74:244-250, 2011. (C) 2010 Wiley-Liss, Inc.