126 resultados para baryon asymmetry
Resumo:
Objective. This study was designed to determine the precision and accuracy of angular measurements using three-dimensional computed tomography (3D-CT) volume rendering by computer systems. Study design. The study population consisted of 28 dried skulls that were scanned with a 64-row multislice CT, and 3D-CT images were generated. Angular measurements, (n = 6) based upon conventional craniometric anatomical landmarks (n = 9), were identified independently in 3D-CT images by 2 radiologists, twice each, and were then performed by 3D-CT imaging. Subsequently, physical measurements were made by a third examiner using a Beyond Crysta-C9168 series 900 device. Results. The results demonstrated no statistically significant difference between interexaminer and intraexaminer analysis. The mean difference between the physical and 3-D-based angular measurements was -1.18% and -0.89%, respectively, for both examiners, demonstrating high accuracy. Conclusion. Maxillofacial analysis of angular measurements using 3D-CT volume rendering by 64-row multislice CT is established and can be used for orthodontic and dentofacial orthopedic applications.
Resumo:
Auriculo-condylar syndrome (ACS), an autosomal dominant disorder of first and second pharyngeal arches, is characterized by malformed ears (`question mark ears`), prominent cheeks, microstomia, abnormal temporomandibular joint, and mandibular condyle hypoplasia. Penetrance seems to be complete, but there is high inter-and intra-familial phenotypic variation, with no evidence of genetic heterogeneity. We herein describe a new multigeneration family with 11 affected individuals (F1), in whom we confirm intra-familial clinical variability. Facial asymmetry, a clinical feature not highlighted in other ACS reports, was highly prevalent among the patients reported here. The gene responsible for ACS is still unknown and its identification will certainly contribute to the understanding of human craniofacial development. No chromosomal rearrangements have been associated with ACS, thus mapping and positional cloning is the best approach to identify this disease gene. To map the ACS gene, we conducted linkage analysis in two large ACS families, F1 and F2 (F2; reported elsewhere). Through segregation analysis, we first excluded three known loci associated with disorders of first and second pharyngeal arches (Treacher Collins syndrome, oculo-auriculo-vertebral spectrum, and Townes-Brocks syndrome). Next, we performed a wide genome search and we observed evidence of linkage to 1p21.1-q23.3 in F2 (LOD max 3.01 at theta = 0). Interestingly, this locus was not linked to the phenotype segregating in F1. Therefore, our results led to the mapping of a first locus of ACS (ACS1) and also showed evidence for genetic heterogeneity, suggesting that there are at least two loci responsible for this phenotype.
Resumo:
The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.
Resumo:
Sprites have been detected in video camera observations from Niger over mesoscale convective systems in Nigeria during the 2006 AMMA (African Monsoon Multidisciplinary Analysis) campaign The parent lightning flashes have been detected by multiple Extremely Low Frequency (ELF) receiving stations worldwide The recorded charge moments of the patent lightning flashes are often in excellent agreement between different receiving sites, and are furthermore consistent with conventional dielectric breakdown in the mesosphere as the origin of the sprites Analysis of the polarization of the horizontal magnetic field at the distant receivers provides evidence that the departure from linear magnetic polarization at ELF is caused primarily by the clay night asymmetry of the Earth-ionosphere cavity Copyright (C) 2009 Royal Meteorological Society
Resumo:
Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.
Resumo:
We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new class of accelerating cosmological models driven by a one-parameter version of the general Chaplygin-type equation of state is proposed. The simplified version is naturally obtained from causality considerations with basis on the adiabatic sound speed vs plus the observed accelerating stage of the universe. We show that very stringent constraints on the unique free parameter a describing the simplified Chaplygin model can be obtained from a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations (BAO). In our analysis we have considered separately the SNe type la gold sample measured by [A.G. Riess et al.. Astrophys. J. 607 (2004) 665] and the supernova legacy survey (SNLS) from [P. Astier et al., Astron. Astrophys. 447 (2006) 31]. At 95.4% (c.l.), we find for BAO + gold sample, 0.91 <= alpha <= 1.0 and Omega(m) = 0.28(-0.048)(+0.043) while BAO + SNLS analysis provides 0.94 <= alpha <= 1.0 and Omega(m) = 0.27(-0.045)(+0.048). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
Resumo:
Many generalist populations may actually be composed of relatively specialist individuals. This `individual specialization` may have important ecological and evolutionary implications. Although this phenomenon has been documented in more than one hundred taxa, it is still unclear how individuals within a population actually partition resources. Here we applied several methods based on network theory to investigate the intrapopulation patterns of resource use in the gracile mouse opossum Gracilinanus microtarsus. We found evidence of significant individual specialization in this species and that the diets of specialists are nested within the diets of generalists. This novel pattern is consistent with a recently proposed model of optimal foraging and implies strong asymmetry in the interactions among individuals of a population.