279 resultados para Th2 cytokines
Resumo:
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFN gamma/TNF alpha, IFN gamma/IL-2 or TNF alpha/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFN gamma/TNF alpha/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses-elicited by other HIV immunogens.
Resumo:
Background: Leishmania braziliensis is the main causative agent of cutaneous leishmaniasis in Brazil. Protection against infection is related to development of Th1 responses, but the mechanisms that mediate susceptibility are still poorly understood. Murine models have been the most important tools in understanding the immunopathogenesis of L. major infection and have shown that Th2 responses favor parasite survival. In contrast, L. braziliensis-infected mice develop strong Th1 responses and easily resolve the infection, thus making the study of factors affecting susceptibility to this parasite difficult. Methodology/Principal Findings: Here, we describe an experimental model for the evaluation of the mechanisms mediating susceptibility to L. braziliensis infection. BALB/c mice were inoculated with stationary phase promastigotes of L. braziliensis, isolates LTCP393(R) and LTCP15171(S), which are resistant and susceptible to antimony and nitric oxide (NO), respectively. Mice inoculated with LTCP393(R) presented larger lesions that healed more slowly and contained higher parasite loads than lesions caused by LTCP15171(S). Inflammatory infiltrates in the lesions and production of IFN-gamma, TNF-alpha, IL-10 and TGF-beta were similar in mice inoculated with either isolate, indicating that these factors did not contribute to the different disease manifestations observed. In contrast, IL-4 production was strongly increased in LTCP393(R)-inoculated animals and also arginase I (Arg I) expression. Moreover, anti-IL-4 monoclonal antibody (mAb) treatment resulted in decreased lesion thickness and parasite burden in animals inoculated with LTCP393(R), but not in those inoculated with LTCP15171(S). Conclusion/Significance: We conclude that the ability of L. braziliensis isolates to induce Th2 responses affects the susceptibility to infection with these isolates and contributes to the increased virulence and severity of disease associated with them. Since these data reflect what happens in human infection, this model could be useful to study the pathogenesis of the L. braziliensis infection, as well as to design new strategies of therapeutic intervention.
Resumo:
Background: Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results: TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions: Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Introduction: Treatment of severe bacterial peritonitis, especially by videolaparoscopy, is still a matter of investigation. The aim of the present study was to evaluate the effect of videolaparoscopy and laparotomy access with or without antibiotics on the outcome of severe bacterial peritonitis in rats. Materials and Methods: Sixty-four male Wistar rats were equally assigned to 8 groups: Sham surgery (SHAM), SHAM+antibiotics (SHAM+AB), cecal ligation and puncture (CLP), CLP+AB, CLP+videolaparoscopy (VLAP), CLP+laparotomy (LAP), VLAP+AB, and LAP+AB. All treated animals were submitted to an evaluation of bacteremia, white cell counts, and cytokine determinations: interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-alpha). The groups treated with antibiotics received gentamicin and metronidazole. Survival was monitored over a period of 7 days. Results: Peritonitis induced by CLP was severe, with IL-1, IL-6, and TNF-alpha levels and lethality being significantly higher compared to the SHAM group. The IL-6 levels in the VLAP group were significantly higher compared to the CLP and VLAP+AB groups, and the TNF-alpha levels in the VLAP and LAP+AB groups were significantly higher compared to the LAP group. The survival time was significantly higher in the CLP+AB and VLAP+AB groups, when compared to the CLP group. There was no significant difference in bacteremia and lethality rates between the resources employed for treatment of peritonitis. Conclusions: Although the use of laparoscopic access itself exacerbates the inflammatory response, the combination with antibiotics minimizes this effect and increases the survival time. However, all of the resources used for treating severe peritonitis, when applied alone or in combination, have an equivalent influence on bacteremia and lethality rates.
Resumo:
Wide-ranging activation of the innate immune system causing chronic low-grade inflammation is closely involved not only in the pathogenesis of type 2 diabetes mellitus and its complications, through an ongoing cytokine-induced acute-phase response, but also in the pathogenesis of periodontal diseases, whereby cytokines play a central role in the host's response to the periodontal biofilm. Although there is extensive knowledge about the pathways through which diabetes affects periodontal status, less is known about the impact of periodontal diseases on the diabetes-related inflammatory state. This review attempts to explain the immunobiological connection between periodontal diseases and type 2 diabetes mellitus, exploring the mechanisms through which periodontal infection can contribute to the low-grade general inflammation associated with diabetes (thus aggravating insulin resistance) and discussing the impact of periodontal treatment on glycemic control in people living with both diabetes and periodontal disease.
Resumo:
Background: Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1 beta and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold) using caspase-1 deficient mice (casp1-/-). Results: Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE(2) and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL)-1 beta and cyclooxygenase (COX)-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNF)alpha and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1 beta and PGE(2) did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-alpha and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1 beta was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE(2) production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion: These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1 beta maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE(2) production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein produced mostly in endothelial cells and its transcription is regulated by a variety of growth factors and cytokines. VEGF plays many relevant roles, and three functional polymorphisms in the promoter region of the VEGF gene (C-2578A, G-1154A, and G-634C) have been associated with disease conditions. Although some studies suggest that interethnic differences exist in the distribution of these variants, no previous study has examined this hypothesis in admixed populations. We examined the distribution of these three clinically relevant VEGF single-nucleotide polymorphisms in 175 white and 185 black subjects. We have also estimated the haplotype distribution and assessed associations between these variants. Although the A-2578 and A-1154 variants were more common in whites (39% and 29%, respectively) than in blacks (29% and 16%, respectively; both p < 0.05), no significant interethnic differences were found with regards to the G-634C polymorphism. While the haplotype including the C-2578, G-1154, and G-634 variants was the most common in both ethnic groups, it was more common in blacks than in whites (p < 0.05). The haplotype including the C-2578, A-1154, and G-634 alleles and the haplotype including the C-2578, A-1154, and C-634 alleles were more common in whites than in blacks (both p < 0.05). These results show marked interethnic differences in the distribution of genetic variants of VEGF that may explain, at least in part, interethnic disparities in the susceptibility to cardiovascular diseases.
Resumo:
Vascular endothelial growth factor (VEGF) production is regulated by growth factors and inflammatory cytokines, and VEGF plays a role in migraine. We examined for the first time whether three functional polymorphisms in the promoter region of VEGF gene (C(-2578)A, G(-1154A), and G(-634C)) and VEGF haplotypes are associated with migraine. We studied 114 healthy women without migraine and 175 women with migraine (129 without aura, and 46 with aura). We found no differences in the distributions of VEGF genotypes and alleles (p > 0.05). However, the CAC haplotype was more frequent in controls than in migraine patients, and the AGC haplotype was more frequent in patients with migraine with aura than in controls (both p < 0.05). These findings suggest that VEGF haplotypes affect susceptibility to migraine.
T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis
Resumo:
Background: Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods: From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-alpha, IL-1 alpha were searched and quantified. Results: We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the expression of these molecules ranged from absent to medium intensity. It was not observed any correlation between severity of the disease and these markers. There was a correlation between the number of Leishmania antigen positive cells and CD4+ T cells, and between the number of CD4+ T cells and CD8+ T cells. In dogs presenting different histopathological patterns of glomerulonephritis, parameters of proliferation and apoptosis were studied. Ki-67, a proliferative marker, was not detected locally, but fewer apoptotic cells and lower TNF-alpha expression were seen in infected animals than in non-infected controls. Conclusion: Immunopathogenic mechanisms of VL glomerulonephritis are complex and data in the present study suggest no clear participation of immunoglobulin and C3b deposits in these dogs but the possible migration of CD4+ T cells into the glomeruli, participation of adhesion molecules, and diminished apoptosis of cells contributing to determine the proliferative pattern of glomerulonephritis in VL.
Resumo:
Objective: Our aim was to analyze the effect of laser phototherapy on the secretory activity of macrophages activated by interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS), and stimulated by substances leached from an epoxy resin-based sealer (AH-Plus) and a calcium hydroxide-based sealer (Sealapex). Background Data: Laser phototherapy can modulate the inflammatory process, improving wound healing. This type of therapy could be useful for modulating postoperative symptoms seen after endodontic treatment. Materials and Methods: Cytotoxicity was indirectly assessed by measuring mitochondrial activity. Macrophages were stimulated by the leached substances or not (controls), and the groups were then irradiated or not. The secretion of pro-inflammatory cytokines (TNF-alpha and MMP-1) was analyzed using ELISA. Two irradiations at 6-h intervals were done with an As-Ga-Al diode laser (780 nm, 70 mW, spot size 4.0 mm(2), 3 J/cm(2), for 1.5 sec) in contact mode. Results: The sealers were non-cytotoxic to macrophages. The production of TNF-alpha was significantly decreased by laser phototherapy, regardless of experimental group. The level of secretion of MMP-1 was similar in all groups. Conclusion: Based on the conditions of this study we concluded that in activated macrophages, laser phototherapy impairs the secretion of the pro-inflammatory cytokine TNF-alpha, but has no influence on MMP-1 secretion.
Resumo:
Objective: The aims of the present study were to investigate the effect of low-intensity laser irradiation on the total number of mast cells as well as the percentage of degranulation in human gingiva. Blood vessel dilation was also evaluated. Background Data: It has been proposed that low-intensity laser irradiation can ameliorate pain, swelling, and inflammation. In periodontal tissue, mast cells may influence either the destructive events or the defense mechanism against periodontal disease via secretion of cytokines and through cellular migration to improve the healing process. Mast cells play an important role in the inflammatory process. Methods: Twenty patients with gingival enlargement indicated for gingivectomy were selected. Gingival fragments were obtained from each patient and divided into three different groups before surgery. One fragment was removed without any irradiation. The two others were submitted to punctual irradiation with an energy density of 8 J/cm(2) at an output power of 50 mW at 36 Hz for 36 sec before gingivectomy. Nondegranulated and degranulated mast cells were counted in five areas of the gingival fragment connective tissue. Major and minor diameters of the blood vessels were also measured. Results: Both red and infrared radiation promoted a significant increase in mast cell degranulation compared to controls; however, no statistically significant differences (p > 0.05) were observed between the irradiated groups. No significant differences among the groups were observed regarding blood vessel size. Conclusion: The results suggests that red and infrared wavelengths promote mast cell degranulation in human gingival tissue, although no dilation of blood vessels was observed. The effects of premature degranulation of mast cells in human tissue and the laser radiation protocol applied in this study encourage further investigations to extend these results into clinical practice.
Resumo:
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
The pivotal role of spleen CD4(+) T cells in the development of both malaria pathogenesis and protective immunity makes necessary a profound comprehension of the mechanisms involved in their activation and regulation during Plasmodium infection. Herein, we examined in detail the behaviour of non-conventional and conventional splenic CD4(+) T cells during P. chabaudi malaria. We took advantage of the fact that a great proportion of CD4(+) T cells generated in CD1d(-/-) mice are I-A(b)-restricted (conventional cells), while their counterparts in I-Ab(-/-) mice are restricted by CD1d and other class IB major histocompatibility complex (MHC) molecules (non-conventional cells). We found that conventional CD4(+) T cells are the main protagonists of the immune response to infection, which develops in two consecutive phases concomitant with acute and chronic parasitaemias. The early phase of the conventional CD4(+) T cell response is intense and short lasting, rapidly providing large amounts of proinflammatory cytokines and helping follicular and marginal zone B cells to secrete polyclonal immunoglobulin. Both TNF-alpha and IFN-gamma production depend mostly on conventional CD4(+) T cells. IFN-gamma is produced simultaneously by non-conventional and conventional CD4(+) T cells. The early phase of the response finishes after a week of infection, with the elimination of a large proportion of CD4(+) T cells, which then gives opportunity to the development of acquired immunity. Unexpectedly, the major contribution of CD1d-restricted CD4(+) T cells occurs at the beginning of the second phase of the response, but not earlier, helping both IFN-gamma and parasite-specific antibody production. We concluded that conventional CD4(+) T cells have a central role from the onset of P. chabaudi malaria, acting in parallel with non-conventional CD4(+) T cells as a link between innate and acquired immunity. This study contributes to the understanding of malaria immunology and opens a perspective for future studies designed to decipher the molecular mechanisms behind immune responses to Plasmodium infection.
Resumo:
Activation of NF-kappa B and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B(4) (LTB(4)) are pivotal components of host defense and inflammatory responses. However, the role of LTB(4) in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1 beta and IL-18) are reduced in mice lacking either 5-LO or the LTB(4) receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-kappa B. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-kappa B through Stat1-dependent expression of MyD88.