80 resultados para THREE-DIMENSIONAL SYSTEM
Resumo:
We report results of magnetoacoustic studies in the quantum spin-chain magnet NiCl(2)-4SC(NH(2))(2) (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c(33) mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T > T(N), where the thermodynamic properties are determined by fermionic magnetic excitations, the ""hallmark"" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a three-dimensional bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The motivation for this research is to make a comparison between dynamic results of a free railway wheelset derailment and safety limits. For this purpose, a numerical simulation of a wheelset derailment submitted to increasing lateral force is used to compare with the safety limit, using different criteria. A simplified wheelset model is used to simulate derailments with different adhesion conditions. The contact force components, including the longitudinal and spin effects, are identified in a steady-state condition on the verge of a derailment. The contact force ratios are used in a three-dimensional (3D) analytical formula to calculate the safety limits. Simulation results obtained with two contact methods were compared with the published results and the safety limit was identified with the two criteria. Results confirm Nadal`s conservative aspect and show that safety 3D analytical formula presents slightly higher safety limits for lower friction coefficients and smaller limits for high friction, in comparison with the simulation results with Fastsim.
Resumo:
Vagal Denervation and Neurally Mediated Syncope. A 15-year-old female patient presented with frequent episodes of vasovagal syncope refractory to non-pharmacological and pharmacological measures. Two tilt-table tests performed before and after conventional therapy were positive and reproduced the patient`s clinical symptoms. Selective vagal denervation, guided by HFS, was performed. Six radiofrequency pulses were applied on the left and right sides of the interatrial septum, abolishing vagal responses at these locations. Basal sinus node and Wenckebach cycle lengths changed significantly following ablation. A tilt test performed after denervation was negative and revealed autonomic tone modification. The patient reported significant improvement in quality of life and remained asymptomatic for 9 months after denervation. After this period, three episodes of NMS occurred during a 4-month interval and a tilt test performed 11 months after the procedure demonstrated vagal activity recovery. (J Cardiovasc Electrophysiol, Vol. 20, pp. 558-563, May 2009).