81 resultados para Scattering Anelastico Neutroni Diffusione Neutrone ILL Diffrattometro Fonone
Resumo:
Stokes and anti-Stokes SERRS intensity fluctuations were observed from a roughened silver electrode immersed in diluted solutions of Brilliant Green (BG), a behaviour linked to single-molecule events. The distributions of the anti-Stokes to Stokes ratios were obtained and their shape showed a strong dependence on the applied potential.
Resumo:
Surface-enhanced Raman scattering (SERS) spectra of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by employing a bi-layer gold substrate, assembled by the reduction of Au(III) over gold-seeded nanoparticles immobilized on functionalized glass substrates. The SERS signal was linear with the logarithm of the solution concentrations between 1.0 x 10(-7) mol L(-1) and 1.0 x 10(-3) mol L(-1), indicating that the bi-layer gold substrate affords a significant dynamic range for SERS, providing an excellent analytical response within this concentration range, and revealing the high sensitivity of the gold surface towards such analyte. In addition, using the same gold substrate, a similar calibration curve was obtained for crystal-violet (CV), and it was possible to identify the concentration limit corresponding to the transition from the average SERS to the nonlinear SERS response. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the application of surface-enhanced resonance Raman spectroscopy (SERRS) for the structural study of alizarin red S (ARS) and the nature of its interaction with silver nanoparticles. SERRS data for ARS over nanostructured silver electrodes suggest a surface-induced reaction of the adsorbed dye and the formation of an ion stabilized by the dye and alkali ions adsorbed at the metal surface. We found that precoating the SERS active substrate with 1-propanethiol inhibits the surface-induced modification of ARS. In addition to preventing structural modifications of ARS, the coating also concentrates the hydrophobic dye close enough to the SERS active interface enabling the observation of excellent Raman spectra of ARS in aqueous environment at ppm levels. The influence of resonance Raman effect and of the pH on the SERS spectra of ARS was also investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Time-dependent fluctuations in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode immersed in diluted solutions of rhodamine 6G (R6G) and congo red (CR). These fluctuations were attributed to a small number of SERS-active molecules probing regions of extremely high electromagnetic field (hot spots) at the nanostructured surface. The time-dependent distribution of SERS intensities followed a tailed statistics at certain applied potentials, which has been linked to single-molecule dynamics. The shape of the distribution was reversibly tuned by the applied voltage. Mixtures of both dyes, R6G and CR, at low concentrations were also investigated. Since R6G is a cationic dye and CR is an anionic dye, the statistics of the SERS intensity distribution of either dye in a mixture were independently controlled by adjusting the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field. This interpretation was supported by a two-dimensional Monte Carlo simulation that took into account the time evolution of the surface configuration of the adsorbed species and their probability to populate a hypothetical hot spot. The potential-controlled SERS dynamics reported here is a first step toward the spectroelectrochemical investigation of redox processes at the single-molecule level by SERS.
Resumo:
Polycarbonate membranes (PCM) of various pores sizes (400, 200, 100 and 50 nm) were used as templates for gold deposition. The electrodeposition from gold ions resulted in the formation of gold nanotubes when large pores size PCMs (400 and 200 nm) were used. On the other hand, gold nanowires were predominant for the PCMs with smaller pores size (100 and 50 nm). Surface-enhanced Raman scattering (SERS) from the probe molecule 4-mercaptopyridine (4-MPy) was obtained from all these nanostructures. The SERS efficiency of the substrates produced using the PC M templates were compared to two commonly used SERS platforms: a roughened gold electrode and gold nanostructures electrodeposited through organized polystyrene spheres (PSS). The SERS signal of the probe molecule increased as the pore diameter of the PCM template decreased. Moreover, the SERS efficiency from the nanostructures produced using 50 nm PCM templates was four and two times better than the signal from the roughened gold electrode and the PSS template, respectively. The SERS substrates prepared using PCM templates were more homogenous over a larger area (ca. 1 cm(2)), presented better spatial and sample to sample reproducibility than the other substrates. These results show that SERS substrates prepared using PCM templates are promising for the fabrication of planar SERS platforms for analytical/bioanalytical applications.
Resumo:
The interaction of emeraldine base (PANI-EB) with silver and gold colloids was probed by using Surface-Enhanced Resonance Raman Scattering (SERRS) at 3 different exciting radiations. Due to the great sensitivity of SERRS technique the detection limit of PANI-EB concentration was ca. 2 x 10(-7) mol L(-1) in Ag and Au colloidal suspensions. The UV-vis-NIR spectra of metal colloids in function of PANI-EB concentrations showed that gold colloids present a higher degree of aggregation than silver colloids. SERRS of PANI-EB on metal colloids allowed the study of the polymeric species formed primarily on the metallic surface. The polymer formed after the adsorption of PANI-EB on metallic nanoparticles is strongly dependent on the nature of the metal colloids. The oxidation of PANI-EB to pernigraniline occurred for silver colloids, while a doping process of PANI-EB on Au nanoparticles was evidenced through the observation of the characteristic SERRS spectrum of emeraldine salt at 1064nm.