91 resultados para Sasakian geometry
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (Sao Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politecnica of Sao Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.
Resumo:
Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.
Resumo:
In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.
Resumo:
In each of the title compounds, R[Ph(Cl)C=(H)C]TeCl(2), R = nBu (1) and Ph (2), the primary geometry about the Te(IV) atom is a pseudo-trigonal-bipyramidal arrangement, with two Cl atoms in apical positions, and the lone pair of electrons and C atoms in the equatorial plane. As the Te(IV) is involved in two, an intra- and an inter-molecular, Te center dot center dot center dot Cl interactions the coordination geometry might be considered as a Psi-pentagonal bipyramid in each case. In addition, in (2) there is a hint of a Te center dot center dot center dot pi interaction (Te center dot center dot center dot C = 3.911(3) A). The key feature in the crystal structure of both compounds is the formation of supramolecular chains mediated by Te center dot center dot center dot Cl contacts. (1): C(12)H(15)Cl(3)Te, triclinic, P (1) over bar, a = 5.9471 (11), b = 10.7826(22), c = 11.7983(19) angstrom, alpha = 75.416(12), beta = 78.868(13), gamma = 80.902(14)degrees, V = 713.6(2) angstrom(3), Z = 2, R(1) = 0.021; (2): C14HIIC13Te, orthorhombic, Pcab, a=7.7189(10), b=17.415(2), c=21.568(3)angstrom, V = 2899.3(6) angstrom(3), Z = 8, R(1) = 0.027.
Resumo:
This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Objectives This prospective study evaluated the association of obesity and hypertension with left atrial (LA) volume over 10 years. Background Although left atrial enlargement (LAE) is an independent risk factor for atrial fibrillation, stroke, and death, little information is available about determinants of LA size in the general population. Methods Participants (1,212 men and women, age 25 to 74 years) originated from a sex-and age-stratified random sample of German residents of the Augsburg area (MONICA S3). Left atrial volume was determined by standardized echocardiography at baseline and again after 10 years. Left atrial volume was indexed to body height (iLA). Left atrial enlargement was defined as iLA >= 35.7 and >= 33.7 ml/m in men and women, respectively. Results At baseline, the prevalence of LAE was 9.8%. Both obesity and hypertension were independent predictors of LAE, obesity (odds ratio [OR]: 2.4; p < 0.001) being numerically stronger than hypertension (OR: 2.2; p < 0.001). Adjusted mean values for iLA were significantly lower in normal-weight hypertensive patients (25.4 ml/m) than in obese normotensive individuals (27.3 ml/m; p = 0.016). The highest iLA was found in the obese hypertensive subgroup (30.0 ml/m; p < 0.001 vs. all other groups). This group also presented with the highest increase in iLA (+6.0 ml/m) and the highest incidence (31.6%) of LAE upon follow-up. Conclusions In the general population, obesity appears to be the most important risk factor for LAE. Given the increasing prevalence of obesity, early interventions, especially in young obese individuals, are essential to prevent premature onset of cardiac remodeling at the atrial level. (J Am Coll Cardiol 2009; 54: 1982-9) (C) 2009 by the American College of Cardiology Foundation
Resumo:
Degenerative aortic valve disease (DAVD), a common finding in the elderly, is associated with an increased risk of death due to cardiovascular causes. Taking advantage of its longitudinal design, this study evaluates the prevalence of DAVD and its temporal associations with long-term exposure to cardiovascular risk factors in the general population. We studied 953 subjects (aged 25-74 years) from a random sample of German residents. Risk factors had been determined at a baseline investigation in 1994/95. At a follow-up investigation, 10 years later, standardized echocardiography determined aortic valve morphology and aortic valve area (AVA) as well as left ventricular geometry and function. At the follow-up study, the overall prevalence of DAVD was 28%. In logistic regression models adjusting for traditional cardiovascular risk factors at baseline age (OR 2.0 [1.7-2.3] per 10 years, P < 0.001), active smoking (OR 1.7 [1.1-2.4], P = 0.009) and elevated total cholesterol levels (OR 1.2 [1.1-1.3] per increase of 20 mg/dL, P < 0.001) were significantly related to DAVD at follow-up. Furthermore, age, baseline status of smoking, and total cholesterol level were significant predictors of a smaller AVA at follow-up study. In contrast, hypertension and obesity had no detectable relationship with long-term changes of aortic valve structure. In the general population we observed a high prevalence of DAVD that is associated with long-term exposure to elevated cholesterol levels and active smoking. These findings strengthen the notion that smoking cessation and cholesterol lowering are promising treatment targets for prevention of DAVD.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Primary teeth were analyzed by micro-SRXRF. The aim of this study was to determine the elemental distribution of lead and calcium in different regions of primary incisor of children living in a notoriously contaminated area (Santo Amaro da Purificacao, Bahia State, Brazil). The measurements were performed in standard geometry of 45 incidence, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The aim of this study was to evaluate the root canal preparation in flat-oval canals treated with either rotary or self-adjusting file (SAF) by using micro-tomography analysis. Methods: Forty mandibular incisors were scanned before and after root canal instrumentation with rotary instruments (n = 20) or SAF (n = 20). Changes in canal volume, surface area, and cross-sectional geometry were compared with preoperative values. Data were compared by independent sample t test and chi(2) test between groups and paired sample t test within the group (alpha = 0.05). Results: Overall, area, perimeter, roundness, and major and minor diameters revealed no statistical difference between groups (P > .05). In the coronal third, percentage of prepared root canal walls and mean increases of volume and area were significantly higher with SAF (92.0%, 1.44 +/- 0.49 mm(3), 0.40 +/- 0.14 mm(2), respectively) than rotary instrumentation (62.0%, 0.81 +/- 0.45 mm(3), 0.23 +/- 0.15 mm2, respectively) (P < .05). SAF removed dentin layer from all around the canal, whereas rotary instrumentation showed substantial untouched areas. Conclusions: In the coronal third, mean increases of area and volume of the canal as well as the percentage of prepared walls were significantly higher with SAF than with rotary instrumentation. By using SAF instruments, flat-oval canals were homogenously and circumferentially prepared. The size of the SAF preparation in the apical third of the canal was equivalent to those prepared with #40 rotary file with a 0.02 taper. (J Endod 2011;37:1002-1007)