164 resultados para Restriction enzymes, DNA.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komarek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB-cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(9Z,11E)-hexadecadienal and (Z11)-hexadecenal, the main sex pheromone components of the sugarcane borer, Diatraea saccharalis, were identified and quantified from four Brazilian and one Colombian populations using GC-EAD, GC-MS and GC analyses. Three different ratios were observed, 9:1,6:1, and 3:1. The pheromone concentration for the major component, (9Z,11E)-hexadecadienal, varied from 6.8 ng/gland to 21.9 ng/gland and from 1.7 ng/gland to 6.5 to the minor component, (Z11)-hexadecenal. The 25 D. saccharalis cytochrome oxidase II sequences that were analyzed showed low intra-specific variation and represented only 11 haplotypes, with the most frequent being the one represented by specimens from Sao Paulo, Parana, and Pernambuco states. Specimens from Colombia showed the highest genetic divergence from the others haplotypes studied. Data on the genetic variability among specimens, more than their geographic proximity, were in agreement with data obtained from analyses of the pheromone extracts. Our data demonstrate a variation in pheromone composition and a covariation in haplotypes of the D. saccharalis populations studied. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question raised by researchers in the field of mathematical biology regarding the existence of error-correcting codes in the structure of the DNA sequences is answered positively. It is shown, for the first time, that DNA sequences such as proteins, targeting sequences and internal sequences are identified as codewords of BCH codes over Galois fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), glutathione reductase (GR), and the isoenzymes of superoxide dismutase (SOD) were determined in the organs of tomato (Lycopersicon esculentum) cultivar Micro-Tom after 104 days of development. The total activities of CAT, GPOX, and GR were higher in the stem than in others tissues, whereas the stem exhibited the lowest APX activity. Activity staining analysis following gel electrophoresis revealed the existence of four SOD isoenzymes in leaves, three in fruits, but only two in the roots and stems. This characterization is essential for an investigation into the effect of abiotic and biotic stresses on the oxidative stress responses by this plant model system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the antioxidant responses of three bacteria (SD1. KD and K9) isolated from soil previously treated with the herbicides metolachlor and acetochlor. By 165 rRNA gene sequencing, we determined that SD1 is phylogenetically related to Enterobacter asburiae, while KD and K9 have divergent genomes that more closely resemble that of Enterobacter amnigenus. Decreased levels of lipid peroxidation were observed in SD1 and KD following treatment with 34 mM metolachlor or 62 mM acetochlor, respectively, indicating that both bacteria were able to adapt to an increase in ROS production. In the presence of 34 mM metolachlor or 62 mM acetochlor, all bacterial isolates exhibited increases in total catalase (CAT) activity (81% for SDI, 53% for KD and 59% for K9), whereas total SOD activity (assessed based on the profile and intensity of the bands) was slightly reduced when the bacteria were exposed to high concentrations of the herbicides (340 mM metolachlor or 620 mM acetochlor). This effect was due to a specific reduction in SOD IV (K9 and KD isolates) by 45% and 90%, respectively, and SOD V (SD1 isolate) isoenzymes by 60%. The most striking result was obtained in the SD1 isolate, where two novel isoenzymes of glutathione reductase (GR) that responded specifically to metolachlor were identified. In addition, acetochlor was shown to induce the expression of a new 57 kDa protein band in the K9 and KD isolates. The bacteria isolated from the herbicide-contaminated soil exhibited an efficient antioxidant system response at herbicide concentrations of up to 34 mM metolachlor or 62 mM acetochlor. These data suggest a mechanism for tolerance that may include the control of an imbalance in ROS production versus scavenging. The data suggest that specific isoenzymes of CAT and GR could be involved in this herbicide tolerance mechanism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-L-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine, synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhizosphere is a niche exploited by a wide variety of bacteria. The expression of heterologous genes by plants might become a factor affecting the structure of bacterial communities in the rhizosphere. In a greenhouse experiment, the bacterial community associated to transgenic eucalyptus, carrying the Lhcb1-2 genes from pea (responsible for a higher photosynthetic capacity), was evaluated. The culturable bacterial community associated to transgenic and wild type plants were not different in density, and the Amplified Ribosomal DNA Restriction Analysis (ARDRA) typing of 124 strains revealed dominant ribotypes representing the bacterial orders Burkholderiales, Rhizobiales, and Actinomycetales, the families Xanthomonadaceae, and Bacillaceae, and the genus Mycobacterium. Principal Component Analysis based on the fingerprints obtained by culture-independent Denaturing Gradient Gel Electrophoresis analysis revealed that Alphaproteobacteria, Betaproteobacteria and Actinobacteria communities responded differently to plant genotypes. Similar effects for the cultivation of transgenic eucalyptus to those observed when two genotype-distinct wild type plants are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) analysis has proved useful for forensic identification especially in cases where nuclear DNA is not available, such as with hair evidence. Heteroplasmy, the presence of more than one type of mtDNA in one individual, is a common situation often reported in the first and second mtDNA hypervariable regions (HV1/HV2), particularly in hair samples. However, there is no data about heteroplasmy frequency in the third mtDNA hypervariable region (HV3). To investigate possible heteroplasmy hotspots, HV3 from hair and blood samples of 100 individuals were sequenced and compared. No point heteroplasmy was observed, but length heteroplasmy was, both in C-stretch and CA repeat. To observe which CA ""alleles"" were present in each tissue, PCR products were cloned and re-sequenced. However, no variation among CA alleles was observed. Regarding forensic practice, we conclude that point heteroplasmy in HV3 is not as frequent as in the HV1/HV2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) a parts per thousand 0.40 g l(-1)) and yield factor (Y (P/S) a parts per thousand 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.