140 resultados para Physical culture
Resumo:
Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.
Resumo:
The climatic water balance is one of the most used tools to assess, indirectly the amount of water present in the soil is capable of meeting the water needs of the plant. This study analyzed the climatologic hydric balance, the effective soil water storage and coffee plant transpiration in dry regimen cultivation. Daily climatologic hydric balance was calculated for coffee from January 2003 to May 2006. It was concluded that even in the most rainy months of the year, there is a hydric deficit in coffee plants grown in a dry regimen; effective soil water storage varied greatly through the years evaluated, and September was the most critical month, when this value remained below 30%; relative transpiration can not be taken as the single evaluation method for yield losses of coffee, grown in a dry regimen.
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism-plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR-DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.
Resumo:
Climatic variations influence formation and maturation of coffee grains by altering their intrinsic characteristics, which call allow for several types of coffee qualities, including the potential for production of special coffee. This study was carried out to verify the effect of environmental conditions and crop cultivation on chemical composition and their consequences in cup quality of coffees from region of Jesuitas, Parana State. During the same crop season this study was accomplished (2002-2003), cup quality was evaluated among the producers in several coffee-growing municipalities in Parana State. It was observed that 86% of samples were classified simply as ""soft"" (smooth flavor) or ""hard"" (bolder flavor), and 14% were classified as rioysh/rio (strong unpleasant taste). The results concluded that the practices adopted by producers, who have collaborated with the study, reflected positively oil the final cup quality, when compared to the overall quality results in the State. The climatic conditions and practices of crop management and harvest ill the Jesuitas region made for bolder coffee with low acidity, comparable to high quality coffees produced in Brazil and abroad.
Resumo:
In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3 1, mu m) and rheology profile. Transposition occurred from a batch of 500-50,000 g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Focusing on the therapeutic and cosmetic potentials of the thermal water, several processes were developed to achieve a raw material known as fango which presents in its constitution water, clay and organic soil. This research work aimed at characterizing turf, sulphur mud and fango from Araxa, MG, Brazil, through physical, physicochemical, inorganic and organic assessments for cosmetic and topical product proposes. The characterization permitted the determination of relevant parameters to suggest the efficacy (presence, of ions) and safety (absence of toxic metals) of those raw materials for cosmetic and pharmaceutical utilization.
Resumo:
The main goal of the present research effort was to evaluate the physical-chemical properties of blends of lard and soybean oil following enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosa (Lipozyme (TM) TL IM). Lipase-catalyzed interesterification produced new tri-acylglycerols that changed the physical-chemical properties of the fat blends under study. Solid fat content (31.3 vs 31.5 g/100 g), consistency (104.7 vs 167.6 kPa), crystallized area (0.6 vs 11.8) and softening point (31.8 vs 32.2 degrees C) of lard increased after interesterification, and this was mostly due to the increase of SSS (saturated) + SSU (disaturated-monounsaturated) triacylglycerols. These contents (SSU + SSS) increased in lard after interesterification from 42.9 to 46.7 g/100 g. The interesterified blends exhibited lower values for the physical properties when compared with their counterparts before enzymatic interesterification. The interesterification of blends of lard with soybean oil increased the amounts of UUU (triunsaturated) and SSS triacylglycerols and reduced the amounts of UUS (diunsaturated-monosaturated) triacylglycerols. The interesterified blends of lard and soybean oil demonstrated physical properties and chemical composition similar to human milk fat and they could be used for the production of a human milk fat substitute. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inulin was used as a prebiotic to improve the quality and consistency of skim milk fermented by co-cultures and pure Cultures of Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus and Bifidobacterium lactis with Streptococcus thermophilus. We compared, either in the presence or absence of 4 g inulin/100 g, the results of the main kinetic parameters, specifically the generation time (t(g)), the maximum acidification rate (V(max)). and the times to reach V(max) (t(max)), to attain pH 5.0 (t(pH5.0)) and to complete the fermentation (t(pH4.5)). Post-acidification, lactic acid formation and cell counts were also determined and compared, either 1 day after the fermentation was complete or after 7 day storage at 4 degrees C. In general, inulin addition to the milk increased in co-cultures V(max), decreased t(max), t(g) and t(pH4.5), favored post-acidification, exerted a bifidogenic effect, and preserved almost intact cell viability during storage. In addition, S. thermophilus was shown to stimulate the metabolism of the other lactic bacteria. Contrary to co-cultures, most of the effects in pure Cultures were not statistically significant. The most important aspect of this paper is the use of the generation time as a toot to investigate the microbial response to inulin addition. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inulin was used as a prebiotic to improve the quality and consistency of skim milk fermented by Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), Lactobacillus bulgaricus (Lb) and Bifidobacterium lactis (BI) with Streptococcus thermophilus (St), either in binary co-cultures or in cocktail containing all microorganisms. We compared, either in the presence of 40 mg inulin g(-1) or not, the results of the maximum acidification rate (V(max)) and the times to reach it (t(max)), to reach pH 5.0 (t(PH5.0)) and to complete the fermentation (t(f)). Post-acidification, lactic acid formation and cell counts were also compared after either 1 day (D1) or 7 days of storage at 4 degrees C (N). In co-culture, inulin addition to the milk increased V(max), decreased t(max) and t(f), favored post-acidification and exerted a bifidogenic effect. S. thermophilus proved to stimulate the metabolism of the other lactic bacteria and enhanced the product features. After D7, a significant prebiotic effect of inulin was observed in all co-cultures. Either after D1 or D7, the enumerations of Lr and BI in mixed culture markedly decreased compared to their respective co-cultures because of greater competition for the same substrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of a probiotic culture of Lactobacillus acidophilus (La-5), added solely or in co-culture with a starter culture of Streptococcus thermophilus, on texture, proteolysis and related properties of Minas fresh cheese during storage at 5 degrees C was investigated. Three cheese-making trials were prepared and produced with no addition of cultures (T1 - control), supplemented with La-5 (T2), and with La-5 + S. thermophilus (T3). Viable counts of La-5 remained above 6.00 log cfu g(-1) during the whole storage for T2, reaching 7.00 log cfu g(-1) on the 14th day. For T3, the counts of La-5 remained above 6.00 log cfu g(-1) after 7 days of storage. Due to the presence of S. thermophilus, T3 presented the highest proteolytic index increase and titratable acidity values. Nevertheless, these results and S. thermophilus addition had no influence on viability of La-5 which presented satisfactory populations for a probiotic food. Moreover, the use of a yoghurt culture for the production of Minas fresh cheese T3 supplemented with La-5 resulted in a good quality product, with a small rate of post-acidification, indicating that traditional yoghurt culture could be employed in co-culture with La-5 to improve the quality of this cheese. (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Biomaterials have been widely used in the field of regenerative medicine. Bovine pericardium tissue has been successfully used as a bioprosthetic material in manufacturing heart valves, but studies concerning the tissue are ongoing in order to improve its storage, preservation and transportation. This article provides an overview of the characteristics of bovine pericardium tissue chemically treated after the freeze-drying process. These characteristics are essential to evaluate the changes or damage to the tissue during the process. Methods: The mechanical properties of the tissue were analyzed by three different methods due to its anisotropic characteristics. The physical properties were analyzed by a colorimetric method, while the morphological properties were evaluated by scanning electron microscopy (SEM). Results: The freeze-dried bovine pericardium showed no significant change in its mechanical properties. There was no significant change in the elasticity of the tissue (p > 0.05) and no color change. In addition, SEM analysis showed that the freeze-dried samples did not suffer structural collapse. Conclusions: It was concluded that glutaraldehyde-treated bovine pericardium tissue showed no significant change in its properties after the freeze-drying process.