83 resultados para PLASMODIUM-FALCIPARUM MALARIA
Resumo:
The naturally occurring clonal diversity among field isolates of the major human malaria parasite Plasmodium vivax remained unexplored until the early 1990s, when improved molecular methods allowed the use of blood samples obtained directly from patients, without prior in vitro culture, for genotyping purposes. Here we briefly review the molecular strategies currently used to detect genetically distinct clones in patient-derived P. vivax samples, present evidence that multiple-clone P. vivax infections are commonly detected in areas with different levels of malaria transmission and discuss possible evolutionary and epidemiological consequences of the competition between genetically distinct clones in natural human infections. We suggest that, when two or more genetically distinct clones are present in the same host, intra-host competition for limited resources may select for P. vivax traits that represent major public health challenges, such as increased virulence, increased transmissibility and antimalarial drug resistance.
Resumo:
No Espírito Santo, os casos de malária autóctone estão distribuídos na região serrana próximo aos fragmentos de Mata Atlântica. Uma vez que alguns aspectos da doença são obscuros, a detecção das possíveis espécies de vetores pode auxiliar na elucidação de incertezas epidemiológicas. Estudos entomológicos e de infecção natural foram realizados com anofelinos (Diptera: Culicidae) capturados no município de Santa Tereza, ES. Capturas mensais foram realizadas de março de 2004 a fevereiro de 2006. Armadilhas CDC-CO2 foram utilizadas do crepúsculo (18:00h) ao amanhecer (6:00h), para capturar anofelinos nos seguintes habitats: próximo ao domicílio e área aberta (solo), margem e interior da mata (solo e copa). Armadilhas Shannon também foram utilizadas nos mesmos locais que as de CDC-CO2. Capturou-se o total de 2.290 anofelinos distribuídos em 10 espécies. A maior frequência relativa foi de Anopheles (Kerteszia) cruzii Dyar & Knab / A.(K.) homunculus Komp, sendo a maioria capturada em CDC-CO2 instalada na copa da mata. A principal espécie capturada em armadilha Shannon foi A.(Nyssorhynchus) strodei Root. O maior número de anofelinos foi capturado entre julho e setembro das 18:00h às 22:00h. Provavelmente A.(K.) cruzii é responsável pela transmissão da malária dentro ou próximo aos fragmentos de Mata Atlântica. Entretanto, a participação de outras espécies não pode ser ignorada, visto que 53 por cento da amostragem foi constituída pelo subgênero Nyssorhynchus. A detecção de Plasmodium vivax no tórax de A. cruzii, A. parvus (Chagas) e A. galvaoi Causey, Deane & Deane por meio de PCR reforça esse argumento
Resumo:
Background: Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion. Methods: The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like. Results: These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V-repetitive regions (p = 0.0005, Fisher's Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP. Conclusions: This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.
Resumo:
Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.
Resumo:
Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P. gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.
Resumo:
Background: Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis. Methodology/Principal Findings: C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O(2), 3.0 ATA, 1-2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-alpha, IFN-gamma and IL-10 mRNA levels and percentage of gamma delta and alpha beta CD4(+) and CD8(+) T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB)dysfunction and hypothermia. Conclusions/Significance: The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.
Resumo:
The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax. The present study was designed to evaluate the immunogenic properties of a bacterial recombinant protein containing PvAMA-1 DII. To accomplish this, the recombinant protein was administered to mice in the presence of each of the following six adjuvants: Complete/Incomplete Freund`s Adjuvant (CFA/IFA), aluminium hydroxide (Alum), Quil A, QS21 saponin, CpG-ODN 1826 and TiterMax. We found that recombinant DII was highly immunogenic in BALB/c mice when administered in the presence of any of the tested adjuvants. Importantly, we show that DII-specific antibodies recognised the native AMA-1 protein expressed on the surface of P. vivax merozoites isolated from the blood of infected patients. These results demonstrate that a recombinant protein containing PvAMA-1 DII is immunogenic when administered in different adjuvant formulations, and indicate that this region of the AMA-1 protein should continue to be evaluated as part of a subunit vaccine against vivax malaria. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study reports avian malaria caused by Plasmodium relictum in Magellanic Penguins (Spheniscus magellanicus) from Sao Paulo Zoo. The disease was highly infective among the birds and was clinically characterized by its acute course and high mortality. The penguins of Sao Paulo Zoo were housed for at least 2 years without malaria; however, they had always been maintained in an enclosure protected from mosquito exposure during the night period. When they presented pododermatitis, they were freed at night for a short period. sao Paulo Zoo is located in one of the last forest remnants of the city, an area of original Atlantic forest. In the winter, the space destined for Zoo birds is shared with migratory species. Hence the possibility exists that the disease was transmitted to the penguins by mosquitoes that had previously bitten infected wild birds. Avian malaria parasites are transmitted mainly by mosquitoes of the genera Aedes and Culex, common vectors in the Atlantic forest. In this study, one Culex (Cux.) sp. was found, infected with P. relictum. There are diverse problems in housing distinct species of animals in captivity, principally when occupying the same enclosure, since it facilitates the transmission of diseases with indirect cycles, as is the case of Plasmodium spp., because certain species that cause discrete infections in some bird species can become a serious danger for others, especially penguins, which do not possess natural resistance. Thus, serious implications exist for periodically testing and administrating malaria therapy in captive penguins potentially exposed to mosquitoes during the night period, as well as other captive birds from Sao Paulo Zoo. (C) 2010 Elsevier B.V. All rights reserved.