357 resultados para PLANETARY SYSTEMS: FORMATION
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
Background: An evaluation of patients' preferences is necessary to understand the demand for different insulin delivery systems. The aim of this study was to investigate the association between socioeconomic status (SES) and patients' preferences and willingness to pay (WTP) for various attributes of insulin administration for diabetes management. Methods: We conducted a discrete choice experiment (DCE) to determine patients' preferences and their WTP for hypothetical insulin treatments. Both self-reported annual household income and education completed were used to explore differences in treatment preferences and WTP for different attributes of treatment across different levels of SES. Results: The DCE questionnaire was successfully completed by 274 patients. Overall, glucose control was the most valued attribute by all socioeconomic groups, while route of insulin delivery was not as important. Patients with higher incomes were willing to pay significantly more for better glucose control and to avoid adverse events compared to lower income groups. In addition, they were willing to pay more for an oral short-acting insulin ($Can 71.65 [95% confidence interval, $40.68, $102.62]) compared to the low income group ($Can 9.85 [95% confidence interval, 14.86, 34.56; P < 0.01]). Conversely, there were no differences in preferences when the sample was stratified by level of education. Conclusions: This study revealed that preferences and WTP for insulin therapy are influenced by income but not by level of education. Specifically, the higher the income, the greater desire for an oral insulin delivery system, whereas an inhaled route becomes less important for patients.
Resumo:
Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.
Resumo:
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last mu (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory mu(1) = log(2) N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Resumo:
Objective: The aim of this study was to investigate the efficacy of an infrared GaAlAs laser operating with a wavelength of 830 nm in the postsurgical scarring process after inguinal-hernia surgery. Background: Low-level laser therapy (LLLT) has been shown to be beneficial in the tissue-repair process, as previously demonstrated in tissue culture and animal experiments. However, there is lack of studies on the effects of LLLT on postsurgical scarring of incisions in humans using an infrared 830-nm GaAlAs laser. Method: Twenty-eight patients who underwent surgery for inguinal hernias were randomly divided into an experimental group (G1) and a control group (G2). G1 received LLLT, with the first application performed 24 h after surgery and then on days 3, 5, and 7. The incisions were irradiated with an 830-nm diode laser operating with a continuous power output of 40 mW, a spot-size aperture of 0.08 cm(2) for 26 s, energy per point of 1.04 J, and an energy density of 13 J/cm(2). Ten points per scar were irradiated. Six months after surgery, both groups were reevaluated using the Vancouver Scar Scale (VSS), the Visual Analog Scale, and measurement of the scar thickness. Results: G1 showed significantly better results in the VSS totals (2.14 +/- 1.51) compared with G2 (4.85 +/- 1.87); in the thickness measurements (0.11 cm) compared with G2 (0.19 cm); and in the malleability (0.14) compared with G2 (1.07). The pain score was also around 50% higher in G2. Conclusion: Infra-red LLLT (830 nm) applied after inguinal-hernia surgery was effective in preventing the formation of keloids. In addition, LLLT resulted in better scar appearance and quality 6 mo postsurgery.
Resumo:
Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.
Resumo:
Doppler images in Balmer, He I, He II and C II lines, and simultaneous I-band photometry of the polar MR Ser are presented and analyzed. The Balmer and Helium Doppler tomograms, of this bright polar at high mass transfer state show the emission from the accretion flow and the heated surface of the companion star. As a result of a comparison between the Doppler tomograms, the ionization structure of the flow could be constrained. The highest ionization region was found in the vicinity of the magnetospheric radius. Photoionization modeling of the accretion column indicates that the Balmer and Helium emission line production in this system can be explained only by the central soft X-ray illumination. The orbital ephemeris of MR Ser has been revised.
Resumo:
Context. The luminous material in clusters of galaxies exists in two forms: the visible galaxies and the X-ray emitting intra-cluster medium. The hot intra-cluster gas is the major observed baryonic component of clusters, about six times more massive than the stellar component. The mass contained within visible galaxies is approximately 3% of the dynamical mass. Aims. Our aim was to analyze both baryonic components, combining X-ray and optical data of a sample of five galaxy clusters (Abell 496, 1689, 2050, 2631 and 2667), within the redshift range 0.03 < z < 0.3. We determined the contribution of stars in galaxies and the intra-cluster medium to the total baryon budget. Methods. We used public XMM-Newton data to determine the gas mass and to obtain the X-ray substructures. Using the optical counterparts from SDSS or CFHT we determined the stellar contribution. Results. We examine the relative contribution of galaxies, intra-cluster light and intra-cluster medium to baryon budget in clusters through the stellar-to-gas mass ratio, estimated with recent data. We find that the stellar-to-gas mass ratio within r(500) (the radius within which the mean cluster density exceeds the critical density by a factor of 500), is anti-correlated with the ICM temperature, which range from 24% to 6% while the temperature ranges from 4.0 to 8.3 keV. This indicates that less massive cold clusters are more prolific star forming environments than massive hot clusters.
Resumo:
We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.
Resumo:
We present K-band spectra of the near infrared counterparts to IRS 2E and IRS 2W which is associated with the ultracompact H II region W51d, both of them embedded sources in the Galactic compact H II region W51 IRS 2. The high spatial resolution observations were obtained with the laser guide star facility and Near-infrared Integral Field Spectrograph (NIFS) mounted at the Gemini-North observatory. The spectrum of the ionizing source of W51d shows the photospheric features N III ( 21155 angstrom) in emission and He II ( 21897 angstrom) in absorption which lead us to classify it as a young O3 type star. We detected CO overtone in emission at 23000 angstrom in the spectrum of IRS 2E, suggesting that it is a massive young object still surrounded by an accretion disk, probably transitioning from the hot core phase to an ultracompact H II region.
Resumo:
We use multiwavelength data (H I, FUV, NUV, R) to search for evidence of star formation in the intragroup medium of the Hickson Compact Group 100. We find that young star-forming regions are located in the intergalactic H I clouds of the compact group which extend to over 130 kpc away from the main galaxies. A tidal dwarf galaxy (TDG) candidate is located in the densest region of the H I tail, 61 kpc from the brightest group member and its age is estimated to be only 3.3 Myr. Fifteen other intragroup H II regions and TDG candidates are detected in the Galaxy Evolution Explorer (GALEX) FUV image and within a field 10' x 10' encompassing the H I tail. They have ages <200 Myr, H I masses of 10(9.2-10.4) M(circle dot), 0.001
Resumo:
Context. Precise S abundances are important in the study of the early chemical evolution of the Galaxy. In particular the site of the formation remains uncertain because, at low metallicity, the trend of this alpha-element versus [Fe/H] remains unclear. Moreover, although sulfur is not bound significantly in dust grains in the ISM, it seems to behave differently in DLAs and old metal-poor stars. Aims. We attempt a precise measurement of the S abundance in a sample of extremely metal-poor stars observed with the ESO VLT equipped with UVES, taking into account NLTE and 3D effects. Methods. The NLTE profiles of the lines of multiplet 1 of S I were computed with a version of the program MULTI, including opacity sources from ATLAS9 and based on a new model atom for S. These profiles were fitted to the observed spectra. Results. We find that sulfur in EMP stars behaves like the other alpha-elements, with [S/Fe] remaining approximately constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are most closely matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as also found in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] < +0.5 for the ultra metal-poor star CS 22949-037. This, along with a previously reported measurement of zinc, argues against the conjecture that the light-element abundance pattern of this star (and by analogy, the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be due to dust depletion.
Resumo:
Context. Fossil systems are defined to be X- ray bright galaxy groups ( or clusters) with a two- magnitude difference between their two brightest galaxies within half the projected virial radius, and represent an interesting extreme of the population of galaxy agglomerations. However, the physical conditions and processes leading to their formation are still poorly constrained. Aims. We compare the outskirts of fossil systems with that of normal groups to understand whether environmental conditions play a significant role in their formation. We study the groups of galaxies in both, numerical simulations and observations. Methods. We use a variety of statistical tools including the spatial cross- correlation function and the local density parameter Delta(5) to probe differences in the density and structure of the environments of "" normal"" and "" fossil"" systems in the Millennium simulation. Results. We find that the number density of galaxies surrounding fossil systems evolves from greater than that observed around normal systems at z = 0.69, to lower than the normal systems by z = 0. Both fossil and normal systems exhibit an increment in their otherwise radially declining local density measure (Delta(5)) at distances of order 2.5 r(vir) from the system centre. We show that this increment is more noticeable for fossil systems than normal systems and demonstrate that this difference is linked to the earlier formation epoch of fossil groups. Despite the importance of the assembly time, we show that the environment is different for fossil and non- fossil systems with similar masses and formation times along their evolution. We also confirm that the physical characteristics identified in the Millennium simulation can also be detected in SDSS observations. Conclusions. Our results confirm the commonly held belief that fossil systems assembled earlier than normal systems but also show that the surroundings of fossil groups could be responsible for the formation of their large magnitude gap.
Resumo:
Context. The formation of ultra-compact dwarf galaxies (UCDs) is believed to be driven by interaction, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in an intermediate stage in their evolution may be expected. Aims. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups of galaxies. For that, two nearby groups in different evolutionary stages, HCG22 and HCG90, were targeted. Methods. We selected about 40 UCD candidates from pre-existing photometry of both groups, and obtained spectra of these candidates using the VLT FORS2 instrument in MXU mode. Archival HST/ACS imaging was used to measure their structural parameters. Results. We detect 16 and 5 objects belonging to HCG22 and HCG90, respectively, covering the magnitude range -10.0 > M(R) > -11.5 mag. Their integrated colours are consistent with old ages covering a broad range in metallicities (metallicities confirmed by the spectroscopic measurements). Photometric mass estimates put 4 objects in HCG90 and 9 in HCG22 in the mass range of UCDs (> 2 x 10(6) M(circle dot)) for an assumed age of 12Gyr. These UCDs are on average 2-3 times larger than the typical size of Galactic GCs, covering a range of 2 less than or similar to r(h) less than or similar to 21 pc. The UCDs in HCG22 are more concentrated around the central galaxy than in HCG90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub-to super-solar. The spectra of 3 UCDs (2 in HCG22, 1 in HCG90) show tentative evidence of intermediate age stellar populations. The clearest example is the largest and most massive UCD (similar to 10(7) M(circle dot)) in our sample, which is detected in HCG22. Its properties are most consistent with a stripped dwarf galaxy nucleus. We calculate the specific frequency (S(N)) of UCDs for both groups, finding that HCG22 has about three times higher S(N) than HCG90. Conclusions. The ensemble properties of the detected UCDs supports two co-existing formation channels: a star cluster origin (low-luminosity, compact sizes, old ages, super-solar alpha/Fe), and an origin as tidally stripped dwarf nuclei (more extended and younger stellar populations). Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group along with their host galaxies.
Resumo:
Context. Two main scenarios for the formation of the Galactic bulge are invoked, the first one through gravitational collapse or hierarchical merging of subclumps, the second through secular evolution of the Galactic disc. Aims. We aim to constrain the formation of the Galactic bulge through studies of the correlation between kinematics and metallicities in Baade's Window (l = 1 degrees, b = -4 degrees) and two other fields along the bulge minor axis (l = 0 degrees, b = -6 degrees and b = -12 degrees). Methods. We combine the radial velocity and the [Fe/H] measurements obtained with FLAMES/GIRAFFE at the VLT with a spectral resolution of R = 20 000, plus for the Baade's Window field the OGLE-II proper motions, and compare these with published N-body simulations of the Galactic bulge. Results. We confirm the presence of two distinct populations in Baade's Window found in Hill et al. (2010, A&A, submitted): the metal-rich population presents bar-like kinematics while the metal-poor population shows kinematics corresponding to an old spheroid or a thick disc. In this context the metallicity gradient along the bulge minor axis observed by Zoccali et al. (2008, A&A, 486, 177), visible also in the kinematics, can be related to a varying mix of these two populations as one moves away from the Galactic plane, alleviating the apparent contradiction between the kinematic evidence of a bar and the existence of a metallicity gradient. Conclusions. We show evidence that the two main scenarios for the bulge formation co-exist within the Milky Way bulge.