116 resultados para Melissos, de Samos, s. V aC
Resumo:
In this study a magnetic nanoemulsion (MNE) was developed from a mixture of two components, namely biodegradable surfactants and biocompatible citrate-coated cobalt ferrite-based magnetic fluid, for entrapment of Zn(II)-Phthalocyanine (ZnPc), the latter a classical photosensitizer (PS) species used in photodynamic therapy (PDT) procedures. The sample`s stability was evaluated as a function of time using photocorrelation spectroscopy (PCS) for determination of the average hydrodynamic diameter, diameter dispersion and zeta potential. The ZnPc-loaded magneto nanoemulstion (ZnPc/MNE) formulation was evaluated in vitro assays to access the phototoxicity and the effect of application of AC magnetic fields (magnetohyperthermia damage) after incubation with J774-A1 macrophages cells. Darkness toxicity, phototoxicity and AC magnetic field exposures revealed an enhancement response for combined photodynamic and magnetohyperthermia (MHT) processes, indicating the presence of the synergic effect.
Resumo:
The novel asymmetric metallo-organic triads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}(Ru(bpy)(2)Cl}](PF(6))(2) (5a,b) for which cis- and trans-B(4-py)BPFPH(2)=5,10-bis(pentafluorophenyl)-15,20-bis(4-pyridyl)porphyrin and 5,15-bis(pentafluorophenyl)-10,20-bis(4-pyridyl)porphyrin, respectively; Ac = acetate; py = pyridine and bpy = 2,2`-bipyridine, as well as their corresponding monosubstituted dyads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}]PF(6) (4a,b) have been structurally characterized via electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS). The ESI-MS of dyads 4a,b display two characteristic Ru-multicomponent clusters of isotopologue ions corresponding to singly charged ions 4a,b(+) of m/z 1629 and doubly charged ions [4a,b+H](2+) of m/z 815 and the triads 5a,b are detected by ESI-MS as the intact doubly charged cluster of isotopologue ions of m/z 1039 [5a,b](2+). The ESI-MS/MS of 4a,b(+), [4a,b+H](2+) and [5a,b](2+) reveal characteristic dissociation pathways, which confirm the structural assignments providing additional information on the intrinsic binding strengths of the gaseous ions. Although the gas-phase behavior of each pair of isomers was rather similar, the less symmetric dyads 4a,b are distinguished via the (1)H NMR spectral profile of the pyrrolic signals. Exploratory photophysical assays have shown that both modifying motifs alter the porphyrinic core emission profile, opening the possibility to use these asymmetric systems as photophysical devices. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A highly efficient two-step method for the synthesis of pyranoquinoline derivatives from imino-Diels-Alder reactions between aldimines and 3,4-dihydro-2H-pyran using niobium(V) chloride as catalyst under mild conditions is described.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.
Resumo:
Aims: This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. Methods and results: Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n = 15), actinic cheilitis (AC) (n = 30), and lip squamous cell carcinoma (LSCC) (n = 27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. Conclusions: Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.
Resumo:
Background: Surgical resection in locally advanced breast cancer produces large defects that may not be suitable for primary closure. Immediate reconstruction is controversial and presents a complicated scenario for breast surgeons and plastic surgeons. Methods: In this study, a different design was planned for the latissimus dorsi musculocutaneous flap with primary closure in V-Y for the correction of major lesions in the anterior chest wall. Twenty-five patients underwent immediate locally advanced breast cancer reconstruction with a V-Y latissimus dorsi musculocutaneous flap. This flap was raised from adjacent tissue located on the lateral and posterior thoracic region and presented a triangular shape whose base was the lateral aspect of the mastectomy wound. The technique was indicated in patients with large thoracic wounds. Results: Mean follow-up time was 16 months. Closure was obtained in the donor and recipient sites without the use of skin grafts or other more major procedures. Complications occurred in nine patients (36 percent), including dorsal wound dehiscence in five patients and seroma in three. All cases except one were treated by a conservative approach with a good result. No total flap loss was reported. All patients achieved a satisfactory thoracic reconstruction and adequate wound care. Conclusions: The V-Y latissimus dorsi musculocutaneous flap is a reliable technique for immediate locally advanced breast cancer reconstruction. The technique is advantageous because the V-Y design allows primary closure of the chest wound and donor defect. Success depends on patient selection, coordinated planning with the breast cancer surgeon, and careful intraoperative management. (Plast. Reconstr. Surg. 127: 2186, 2011.)
Resumo:
Aliman AC, Piccioni MA, Piccioni JL, Oliva JL, Auler Junior JOC - Intraosseous Anesthesia in Hemodynamic Studies in Children with Cardiopathy. Background and objectives: Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. Methods: This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolann, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. Results: The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Conclusions: Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access.
Resumo:
Objective. To evaluate whether the A/G polymorphism at position 2518 in the regulatory region of the monocyte chemoattractant protein-1 (MCP-1) or the V/I polymorphism at position 64 of the receptor. CCR2, are associated with lupus nephritis (LN) or any clinical characteristics of the disease or with renal survival in a patient population. Methods. We selected 197 patients with lupus nephritis and 220 matched healthy controls for study. MCP-1 and CCR2 genotyping was performed by polymerase chain reaction. Clinical and laboratory data were compiled from patients` charts over followup that ranged from 6 months to 10 years. Results. The GIG genotype of MCP-1 was more common in LN patients (p = 0.019), while the A allele was associated with healthy controls (p = 0.007) as was the V allele of CCR2 (p = 0.046) compared to LN patients. Clinical index measures [SLE Disease Activity Index (SLEDAI)], immunological markers, renal histology, renal function at enrollment, and renal survival were not influenced by these polymorphisms. A less aggressive renal disease, measured by renal SLEDAI index, was associated with the V allele of the CCR2 gene polymorphism. Conclusion. These findings support that MCP-1 2518 GIG is associated with LN but there was no association of this genotype with renal function or renal survival. When studying CCR2 64 V/I polymorphism we showed a positive association of the V allele with healthy controls but no association of the genotype with LN patients. (First Release March 152010; J Rheumatol 2010;37:776-82; doi:10.3899/jrheum.090681)
Resumo:
Dias RG, Alves MJ, Pereira AC, Rondon MU, dos Santos MR, Krieger JE, Krieger MH, Negrao CE. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation. Physiol Genomics 37: 99-107, 2009. First published January 21, 2009; doi:10.1152/physiolgenomics.90368.2008.-The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). L-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
In breast cancer patients, primary chemotherapy is associated with the same survival benefits as adjuvant chemotherapy. Residual tumors represent a clinical challenge, Lis they may be resistant to additional cycles of the same drugs. Our aim was to identify differential transcripts expressed in residual tumors, after neoadjuvant chemotherapy, that might be related with tumor resistance. Hence, 16 patients with paired tumor samples, collected before and after treatment (4 cycles doxorubicin/cyclophosphamide, AC) had their gene expression evaluated on cDNA microarray slides containing 4,608 genes. Three hundred and eighty-nine genes were differentially expressed (paired Student`s t-test, pFDR<0.01) between pre- and post-chemotherapy samples and among the regulated functions were the JNK cascade and cell death. Unsupervised hierarchical clustering identified one branch comprising exclusively, eight pre-chemotherapy samples and another branch, including the former correspondent eight post-chemotherapy samples and other 16 paired pre/post-chemotherapy samples. No differences in clinical and tumor parameters could explain this clustering. Another group of I I patients with paired samples had expression of selected genes determined by real-time RT-PCR and CTGF and DUSP1 were confirmed more expressed in post- as compared to pre-chemotherapy samples. After neoadjuvant chemotherapy some residual samples may retain their molecular signature while others present significant changes in their gene expression, probably induced by the treatment. CTGF and DUSP1 overexpression in residual samples may be a reflection of resistance to further administration of AC regimen.
Resumo:
The ADAM23 gene is frequently silenced in different types of tumors, and, in breast tumors, silencing is correlated with tumor progression, suggesting that it might be associated with the acquisition of a metastatic phenotype. ADAM23 exerts its function mainly through the disintegrin domain, because its metalloprotease domain is inactive. Analysis of ADAM23 binding to integrins has revealed a specific interaction with alpha(v)beta(3) integrin mediated by the disintegrin domain. Altered expression of alpha(v)beta(3) integrin has been observed in different types of tumors, and expression of this integrin in the activated form has been shown to promote metastasis formation. Here, we investigated the possibility that interaction between ADAM23 and alpha(v)beta(3) integrin might negatively modulate alpha(v)beta(3) activation during metastatic progression. ADAM23 expression was knocked down using short hairpin RNA in the MDA-MB-435 cell line, which has been extensively used as a model for alpha(v)beta(3) integrin activation. Ablation of ADAM23 enhanced alpha(v)beta(3) integrin activation by at least 2- to 4-fold and ADAM23 knockdown cells showed enhanced migration and adhesion to classic alpha(v)beta(3) integrin ligands. Ablation of ADAM23 expression also enhanced pulmonary tumor cell arrest in immunodeficient mice. To complement our findings with clinical evidence, we showed that silencing of ADAM23 gene by DNA promoter hypermethylation in a collection of 94 primary breast tumors was significantly associated with lower distant metastases-free and disease-specific survivals and was an independent prognostic factor for poor disease outcome. Our results strongly support a functional role of ADAM23 during metastatic progression by negatively modulating alpha(v)beta(3) integrin activation. [Cancer Res 2009;69(13):5546-52]
Resumo:
Vieira RP, de Andrade VF, Duarte AC, dos Santos AB, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 295: L670-L679, 2008. First published August 29, 2008; doi: 10.1152/ajplung.00465.2007.-Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin ( OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappa B p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappa B p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.