98 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
Resumo:
We review some issues related to the implications of different missing data mechanisms on statistical inference for contingency tables and consider simulation studies to compare the results obtained under such models to those where the units with missing data are disregarded. We confirm that although, in general, analyses under the correct missing at random and missing completely at random models are more efficient even for small sample sizes, there are exceptions where they may not improve the results obtained by ignoring the partially classified data. We show that under the missing not at random (MNAR) model, estimates on the boundary of the parameter space as well as lack of identifiability of the parameters of saturated models may be associated with undesirable asymptotic properties of maximum likelihood estimators and likelihood ratio tests; even in standard cases the bias of the estimators may be low only for very large samples. We also show that the probability of a boundary solution obtained under the correct MNAR model may be large even for large samples and that, consequently, we may not always conclude that a MNAR model is misspecified because the estimate is on the boundary of the parameter space.
Resumo:
In this paper, we discuss inferential aspects for the Grubbs model when the unknown quantity x (latent response) follows a skew-normal distribution, extending early results given in Arellano-Valle et al. (J Multivar Anal 96:265-281, 2005b). Maximum likelihood parameter estimates are computed via the EM-algorithm. Wald and likelihood ratio type statistics are used for hypothesis testing and we explain the apparent failure of the Wald statistics in detecting skewness via the profile likelihood function. The results and methods developed in this paper are illustrated with a numerical example.
Resumo:
We consider the issue of performing residual and local influence analyses in beta regression models with varying dispersion, which are useful for modelling random variables that assume values in the standard unit interval. In such models, both the mean and the dispersion depend upon independent variables. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. An application using real data is presented and discussed.
Resumo:
In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.
Resumo:
The main goal of this paper is to apply the so-called policy iteration algorithm (PIA) for the long run average continuous control problem of piecewise deterministic Markov processes (PDMP`s) taking values in a general Borel space and with compact action space depending on the state variable. In order to do that we first derive some important properties for a pseudo-Poisson equation associated to the problem. In the sequence it is shown that the convergence of the PIA to a solution satisfying the optimality equation holds under some classical hypotheses and that this optimal solution yields to an optimal control strategy for the average control problem for the continuous-time PDMP in a feedback form.
Resumo:
The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal It consists of a plus-shaped maze with two open and two closed arms elevated 50 cm from the floor The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms In this work we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions normal and under the effects of anxiogenic and anxiolytic drugs The spatial structure of the elevated plus-maze is divided into squares which are associated with states of a Markov chain By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze we constructed stochastic matrices for the three conditions studied The stochastic matrices show specific patterns which correspond to the observed behaviors of the rat under the three different conditions For the control group the stochastic matrix shows a clear preference for places in the closed arms This preference is enhanced for the anxiogenic group For the anxiolytic group the stochastic matrix shows a pattern similar to a random walk Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze (C) 2010 Elsevier B V All rights reserved
Resumo:
The main goal of this paper is to establish some equivalence results on stability, recurrence, and ergodicity between a piecewise deterministic Markov process ( PDMP) {X( t)} and an embedded discrete-time Markov chain {Theta(n)} generated by a Markov kernel G that can be explicitly characterized in terms of the three local characteristics of the PDMP, leading to tractable criterion results. First we establish some important results characterizing {Theta(n)} as a sampling of the PDMP {X( t)} and deriving a connection between the probability of the first return time to a set for the discrete-time Markov chains generated by G and the resolvent kernel R of the PDMP. From these results we obtain equivalence results regarding irreducibility, existence of sigma-finite invariant measures, and ( positive) recurrence and ( positive) Harris recurrence between {X( t)} and {Theta(n)}, generalizing the results of [ F. Dufour and O. L. V. Costa, SIAM J. Control Optim., 37 ( 1999), pp. 1483-1502] in several directions. Sufficient conditions in terms of a modified Foster-Lyapunov criterion are also presented to ensure positive Harris recurrence and ergodicity of the PDMP. We illustrate the use of these conditions by showing the ergodicity of a capacity expansion model.
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Resumo:
This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP`s) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space a""e (n) . The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter epsilon > 0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as epsilon goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as epsilon goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyzes the geography of regional competitiveness in manufacturing in Brazil. The authors estimate stochastic frontiers to calculate regional efficiency of representative firms in 137 regions in the period 2000-2006, in four sectors defined by technological intensity. The efficiency results are analyzed using Markov Spatial Transition Matrices to provide insights into the transition of regions between efficiency levels, considering their local spatial context. The results indicate that geography plays an important role in manufacturing competitiveness. In particular, regions with more competitive neighbors are more likely to improve their relative efficiency (pull effect) over time, and regions with less competitive neighbors are more likely to lose relative efficiency (drag effect). The authors find that the pull effect is stronger than the drag effect.
Resumo:
We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.