166 resultados para Imaging science
Resumo:
Real time three-dimensional echocardiography (RT3DE) has been demonstrated to be an accurate technique to quantify left ventricular (LV) volumes and function in different patient populations. We sought to determine the value of RT3DE for evaluating patients with hypertrophic cardiomyopathy (HCM), in comparison with cardiac magnetic resonance imaging (MRI). Methods: We studied 20 consecutive patients with HCM who underwent two-dimensional echocardiography (2DE), RT3DE, and MRI. Parameters analyzed by echocardiography and MRI included: wall thickness, LV volumes, ejection fraction (LVEF), mass, geometric index, and dyssynchrony index. Statistical analysis was performed by Lin agreement coefficient, Pearson linear correlation and Bland-Altman model. Results: There was excellent agreement between 2DE and RT3DE (Rc = 0.92), 2DE and MRI (Rc = 0.85), and RT3DE and MRI (Rc = 0.90) for linear measurements. Agreement indexes for LV end-diastolic and end-systolic volumes were Rc = 0.91 and Rc = 0.91 between 2DE and RT3DE, Rc = 0.94 and Rc = 0.95 between RT3DE and MRI, and Rc = 0.89 and Rc = 0.88 between 2DE and MRI, respectively. Satisfactory agreement was observed between 2DE and RT3DE (Rc = 0.75), RT3DE and MRI (Rc = 0.83), and 2DE and MRI (Rc = 0.73) for determining LVEF, with a mild underestimation of LVEF by 2DE, and smaller variability between RT3DE and MRI. Regarding LV mass, excellent agreement was observed between RT3DE and MRI (Rc = 0.96), with bias of -6.3 g (limits of concordance = 42.22 to -54.73 g). Conclusion: In patients with HCM, RT3DE demonstrated superior performance than 2DE for the evaluation of myocardial hypertrophy, LV volumes, LVEF, and LV mass.
Resumo:
OBJECTIVE. Coronary MDCT angiography has been shown to be an accurate noninvasive tool for the diagnosis of obstructive coronary artery disease (CAD). Its sensitivity and negative predictive value for diagnosing percentage of stenosis are unsurpassed compared with those of other noninvasive testing methods. However, in its current form, it provides no information regarding the physiologic impact of CAD and is a poor predictor of myocardial ischemia. CORE320 is a multicenter multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging. CONCLUSION. We aim to describe the CT acquisition, reconstruction, and analysis methods of the CORE320 study.
Resumo:
Previous studies have reported differences in presenting symptoms and angiographic characteristics between women and men undergoing evaluation for suspected coronary artery disease (CAD). We examined the relation between symptoms and extent of CAD in patients with type 2 diabetes mellitus and known CAD enrolled in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Of 1,775 patients (533 women, 30%, and 1,242 men, 70%), women were more likely than men to have angina (65% vs 56%, p < 0.001) or an atypical angina/anginal equivalent (71% vs 58%, p < 0.001). More women reported unstable angina (17% vs 13%, p = 0.047) or were in a higher Canadian Cardiology Society class compared to men (Canadian Cardiology Society classes II to IV 78% vs 68%, p = 0.002). Fewer women than men had no symptoms (14% vs 22%, p < 0.001). Women had a lower mean myocardial jeopardy index (42.5 +/- 24.3 vs 47.9 +/- 24.3, p < 0.001), smaller number of total significant lesions (2.3 +/- 17 1.7 vs 2.7 +/- 1.8, p < 0.001), and fewer jeopardized left ventricular regions (p < 0.001 for distribution) or long-term occlusions (29% vs 42%, p < 0.001). After adjustment for relevant covariates, the odds of having CAD symptoms were still higher in women than men (odds ratio for angina 1.31, 95% confidence interval 1.02 to 1.69; odds ratio for atypical angina 1.52, 95% confidence interval 1.17 to 1.96). In conclusion, in a high-risk group of patients with known CAD and diabetes mellitus, women were more symptomatic than men but had less obstructive CAD. These data suggest that factors other than epicardial CAD severity influence symptom presentation in women in this population. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:980-985)
Resumo:
Purpose: To evaluate the influence of cross-sectional arc calcification on the diagnostic accuracy of computed tomography (CT) angiography compared with conventional coronary angiography for the detection of obstructive coronary artery disease (CAD). Materials and Methods: Institutional Review Board approval and written informed consent were obtained from all centers and participants for this HIPAA-compliant study. Overall, 4511 segments from 371 symptomatic patients (279 men, 92 women; median age, 61 years [interquartile range, 53-67 years]) with clinical suspicion of CAD from the CORE-64 multi-center study were included in the analysis. Two independent blinded observers evaluated the percentage of diameter stenosis and the circumferential extent of calcium (arc calcium). The accuracy of quantitative multidetector CT angiography to depict substantial (>50%) stenoses was assessed by using quantitative coronary angiography (QCA). Cross-sectional arc calcium was rated on a segment level as follows: noncalcified or mild (<90 degrees), moderate (90 degrees-180 degrees), or severe (>180 degrees) calcification. Univariable and multivariable logistic regression, receiver operation characteristic curve, and clustering methods were used for statistical analyses. Results: A total of 1099 segments had mild calcification, 503 had moderate calcification, 338 had severe calcification, and 2571 segments were noncalcified. Calcified segments were highly associated (P < .001) with disagreement between CTA and QCA in multivariable analysis after controlling for sex, age, heart rate, and image quality. The prevalence of CAD was 5.4% in noncalcified segments, 15.0% in mildly calcified segments, 27.0% in moderately calcified segments, and 43.0% in severely calcified segments. A significant difference was found in area under the receiver operating characteristic curves (noncalcified: 0.86, mildly calcified: 0.85, moderately calcified: 0.82, severely calcified: 0.81; P < .05). Conclusion: In a symptomatic patient population, segment-based coronary artery calcification significantly decreased agreement between multidetector CT angiography and QCA to detect a coronary stenosis of at least 50%.
Resumo:
PURPOSE: To report a series of patients with symptomatic internal carotid artery (ICA) occlusion treated with angioplasty and stents. MATERIALS AND METHODS: From a consecutive series of 50 patients experiencing neurologic ischemic symptoms and shown by conventional ultrasonography (US) to have a total ICA occlusion, 16 patients (ages 45-79 years; mean, 63 y; 10 men) were selected between August 2006 to September 2008 to be treated with angioplasty based on discovery of an open ICA distal to the occlusion through contrast-enhanced echo Doppler imaging and/or multislice contrast computed tomography (CT). Angioplasty and stent placement were performed under cerebral protection. Follow-up duplex imaging was performed at 14 days and 3 months and every 6 months thereafter and CT follow-up was performed at 2-9 months; the mean follow-up period was 9.9 months. RESULTS: Lesion crossing and stent placement was successful in 13 of 16 patients. There were no deaths, conversions, cardiac complications, or major strokes. One patient had a transient mild hemiparesis in the upper limb, with total recovery in 3 months. At follow-up, all 13 patients with a good initial result remained with patent arterial lumens and resolution of neurologic ischemic symptoms. After 2-9 months, ICAs with a ""string sign"" had calibers close or equal to those of normal arteries. CONCLUSIONS: Angioplasty with stent placement is an effective treatment with a low morbidity rate for selected patients who continue to experience neurologic ischemic symptoms despite US findings of total occlusion of the ICA.
Resumo:
Purpose: To define the role of magnetization transfer imaging (MTI) in detecting subclinical central nervous system (CNS) lesions in primary antiphospholipid syndrome (PAPS). Materials and Methods: Ten non-CNS PAPS patients were compared to 10 CNS PAPS patients and 10 age- and sex-matched controls. All PAPS patients met Sapporo criteria. All Subjects underwent conventional MRI and complementary MTI analysis to compose histograms. CNS viability was determined according to the magnetization transfer ratio (MTR) by mean pixel intensity (MPI) and the mean peak height (MPH). Volumetric cerebral measurements were assessed by brain parenchyma factor (BPF) and total/cerebral volume. Results: MTR histograms analysis revealed that MPI was significantly different among groups (P < 0.0001). Non-CNS PAPS had a higher MPI than CNS PAPS, (30.5 +/- 1.01 vs. 25.1 +/- 3.17 percent unit (pu); P < 0.05) although lower than controls (30.5 +/- 1.01 vs. 31.20 < 0.50 pu; P < 0.05). MPH in non-CNS PAPS (5.57 +/- 0.20% (1/pu)} was similar to controls (5.63 +/- 0.20% (1/pu), P > 0.05) and higher than CNS PAPS (4.71 +/- 0.30% (1/pu), P < 0.05). A higher peak location (PL) was also observed in the CNS PAPS group in comparison with the other groups (P < 0.0001). In addition, a lower BPF was found in non-CNS PAPS compared to controls (0.80 +/- 0.03 vs. 0.84 +/- 0.02 units; P < 0.05) but similar to CNS PAPS (0.80 +/- 0.03 vs. 0.79 +/- 0.05 units; P > 0.05). Conclusion: Our findings suggest that non-CNS PAPS patients have subclinical cerebral damage. The long-term-clinical relevance of MTI analysis in these patients needs to be defined by prospective studies.
Resumo:
To determine reference values for tissue Doppler imaging (TDI) and pulsed Doppler echocardiography for left ventricular diastolic function analysis in a healthy Brazilian adult population. Observations were based on a randomly selected healthy population from the city of Vitoria, Espirito Santo, Brazil. Healthy volunteers (n = 275, 61.7% women) without prior histories of cardiovascular disease underwent transthoracic echocardiography. We analyzed 175 individuals by TDI and evaluated mitral annulus E`- and A`-waves from the septum (S) and lateral wall (L) to calculate E`/A` ratios. Using pulsed Doppler echocardiography, we further analyzed the mitral E- and A-waves, E/A ratios, isovolumetric relaxation times (IRTs), and deceleration times (DTs) of 275 individuals. Pulsed Doppler mitral inflow mean values for men were as follows: E-wave: 71 +/- 16 cm/sec, A-wave: 68 +/- 15 cm/sec, IRT: 74.8 +/- 9.2 ms, DT: 206 +/- 32.3 ms, E/A ratio: 1.1 +/- 0.3. Pulsed Doppler mitral inflow mean values for women were as follows: E-wave: 76 +/- 17, A-wave: 69 +/- 14 cm/sec, IRT: 71.2 +/- 10.5 ms, DT: 197 +/- 33.3 ms, E/A ratio: 1.1 +/- 0.3. IRT and DT values were higher in men than in women (P = 0.04 and P = 0.007, respectively). TDI values in men were as follows: E`S: 11 +/- 3 cm/sec, A`S: 13 +/- 2 cm/sec, E`S/A`S: 0.89 +/- 0.2, E`L: 14 +/- 3 cm/sec, A`L: 14 +/- 2 cm/sec, E`L/A`L: 1.1 +/- 0.4. E-wave/ E`S ratio: 6.9 +/- 2.2; E-wave / E`L ratio: 4.9 +/- 1.7. In this study, we determined pulsed Doppler and TDI derived parameters for left ventricular diastolic function in a large sample of healthy Brazilian adults. (Echocardiography 2010;27:777-782).
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
Objectives: The purpose of this study was to measure the intraobserver and interobserver reliability of magnetic resonance detection of cervical spondylotic myelopathy with and without operational guidelines. Methods: Seven radiologists examined images from 10 patients with cord signal abnormalities and clinical signs of myelopathy. Radiologist examined films twice, with and without operational guidelines designed to define stenotic changes, while blinded to the clinical findings of the patients. Analyses included a Fleiss kappa assessment of intraobserver and interobserver reliability. Results: Results demonstrated high percentage of agreement and strong intraobserver reliability and variable Fleiss kappa, values for interobserver assessment. Operational guidelines did not improve the intraobserver or interobserver agreement. Conclusion: Although the percentage of agreement was high in some cases, the kappa agreement was low-most likely a result of the base rate problem of a kappa analysis. Sample bias toward severe degenerative changes resulted in highly prevalent selections and kappa adjusted values. Nonetheless, the results do suggest that substantial intraobserver kappa agreement and a wide range of interobserver kappa agreement exists among trained radiologists during detection of stenotic changes associated with cervical spondylotic myelopathy.
Resumo:
Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Purpose: Erlotinib, an oral tyrosine kinase inhibitor, is active against head-and-neck squamous cell carcinoma (HNSCC) and possibly has a synergistic interaction with chemotherapy and radiotherapy. We investigated the safety and efficacy of erlotinib added to cisplatin and radiotherapy in locally advanced HNSCC. Methods and Materials: In this Phase I/II trial 100 mg/m(2) of cisplatin was administered on Days 8, 29, and 50, and radiotherapy at 70 Gy was started on Day 8. During Phase I, the erlotinib dose was escalated (50 mg, 100 mg, and 150 mg) in consecutive cohorts of 3 patients, starting on Day 1 and continuing during radiotherapy. Dose-limiting toxicity was defined as any Grade 4 event requiring radiotherapy interruptions. Phase 11 was initiated 8 weeks after the last Phase I enrollment. Results: The study accrued 9 patients in Phase I and 28 in Phase II; all were evaluable for efficacy and safety. No dose-limiting toxicity occurred in Phase I, and the recommended Phase 11 dose was 150 mg. The most frequent nonhematologic toxicities were nausea/vomiting, dysphagia, stomatitis, xerostomia and in-field dermatitis, acneiform rash, and diarrhea. Of the 31 patients receiving a 150-mg daily dose of erlotinib, 23 (74%; 95% confidence interval, 56.8%-86.3%) had a complete response, 3 were disease free after salvage surgery, 4 had inoperable residual disease, and 1 died of sepsis during treatment. With a median 37 months` follow-up, the 3-year progression-free and overall survival rates were 61% and 72%, respectively. Conclusions: This combination appears safe, has encouraging activity, and deserves further studies in locally advanced HNSCC. (C) 2010 Elsevier Inc.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(Co)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99)mTc(CO)(3)(H(2)O)(3)](+) ( > 98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) ( > 80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection. (C) 2010 Elsevier Ltd. All rights reserved.