148 resultados para Genomic imprinting
Resumo:
Papaya (Carica papaya) is a relevant tropical crop and physico-chemical changes take place very quickly, as a consequence of activation of biochemical pathways by de nova synthesis of several proteins. Thus, in order to have information on the changes in gene expression in ripening papaya, transcripts from the pulp of unripe and ripe fruit were profiled by differential-display RT-PCR (DDRT-PCR). Seventy transcript derived fragments (TDFs) isolated from gels were re-amplified by PCR and differential expression of 40 papaya genes was confirmed by reverse northern blotting. Twenty-nine positively cloned TDFs were sequenced, and 17 were putatively identified by homology search. Ten of these genes were downregulated during ripening and UDP-glucose glucosyltransferase, alpha-2 importin, RNase L inhibitor-like protein, and a syntaxin protein were identified. Among the up-regulated genes there was a carboxylesterase, an integral membrane Yip1 family protein, a glycosyl hydrolase family-like protein and an endopolygalacturonase. Considering their relatedness to papaya quality, the fragments of genes potentially implicated in carbohydrate metabolism and pulp softening may be considered of interest for further studies. According to the results, differential display was a feasible approach to investigate differences in gene expression during fruit ripening, and can provide interesting information about those fruits whose genomic data is scarce, as is the case of papayas. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.
Resumo:
Host responses following exposure to Mycobacterium tuberculosis (TB) are complex and can significantly affect clinical outcome. These responses, which are largely mediated by complex immune mechanisms involving peripheral blood cells (PBCs) such as T-lymphocytes, NK cells and monocyte-derived macrophages, have not been fully characterized. We hypothesize that different clinical outcome following TB exposure will be uniquely reflected in host gene expression profiles, and expression profiling of PBCs can be used to discriminate between different TB infectious outcomes. In this study, microarray analysis was performed on PBCs from three TB groups (BCG-vaccinated, latent TB infection, and active TB infection) and a control healthy group. Supervised learning algorithms were used to identify signature genomic responses that differentiate among group samples. Gene Set Enrichment Analysis was used to determine sets of genes that were co-regulated. Multivariate permutation analysis (p < 0.01) gave 645 genes differentially expressed among the four groups, with both distinct and common patterns of gene expression observed for each group. A 127-probeset, representing 77 known genes, capable of accurately classifying samples into their respective groups was identified. In addition, 13 insulin-sensitive genes were found to be differentially regulated in all three TB infected groups, underscoring the functional association between insulin signaling pathway and TB infection. Published by Elsevier Ltd.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
Sickle cell disease (SCD) is an inherited disorder caused by a single nucleotide substitution in the P-globin gene. The clinical heterogeneity observed in SCD patients has been attributed to environmental and genetic factors. The patients are subjected to increased oxidative stress, particularly during vaso-occlusive crises and acute chest pain. Another possible cause of oxidative stress in SCD is the high concentration of iron in the patients` plasma. The increase in oxidative stress could be a relevant risk factor for mutagenesis and carcinogenesis. Studies on the frequency of basal chromosomal aberrations in cultured lymphocytes from SCD patients have not been reported so far. In order to contribute to the understanding of the role of the different biomarkers and their relationship with the extremely variable clinical manifestation of SCD, we investigated the frequency of chromosome damage in peripheral lymphocytes from sickle cells patients and healthy controls. We found an increased frequency of chromosome damage and percentage of aberrant metaphases in these patients when compared with control subjects, even at basal values (p < 0.05). In the cytogenetic sensitivity assay, the results showed that these patients presented a marked decrease in the mitotic index values compared with healthy controls. Cisplatin-induced chromosomal damage in lymphocytes from these patients was significantly higher than the frequency measured in healthy controls. The results obtained in the present study showed that more investigations are needed in order to elucidate the susceptibility to genomic instability of SCD patients.
Resumo:
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.
Resumo:
A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, Sao Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 165 rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 165 rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
in the Apis mellifera post-genomic era, RNAi protocols have been used in functional approaches. However, sample manipulation and invasive methods such as injection of double-stranded RNA (dsRNA) can compromise physiology and survival. To circumvent these problems, we developed a non-invasive method for honeybee gene knockdown, using a well-established vitellogenin RNAi system as a model. Second instar larvae received dsRNA for vitellogenin (dsVg-RNA) in their natural diet. For exogenous control, larvae received dsRNA for GFP (dsGFP-RNA). Untreated larvae formed another control group. Around 60% of the treated larvae naturally developed until adult emergence when 0.5 mu g of dsVg-RNA or dsGFP-RNA was offered while no larvae that received 3.0 mu g of dsRNA reached pupal stages. Diet dilution did not affect the removal rates. Viability depends not only on the delivered doses but also on the internal conditions of colonies. The weight of treated and untreated groups showed no statistical differences. This showed that RNAi ingestion did not elicit drastic collateral effects. Approximately 90% of vitellogenin transcripts from 7-day-old workers were silenced compared to controls. A large number of samples are handled in a relatively short time and smaller quantities of RNAi molecules are used compared to invasive methods. These advantages culminate in a versatile and a cost-effective approach. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background Women with 21-hydroxylase deficiency present much variability in external genitalia virilization, even among those with similar impairments of 21-hydroxylase (21OH) activity. Objective To evaluate if the number of CAG (nCAG) repeats of the androgen receptor gene influences the degree of external genitalia virilization in women with CYP21A2 mutations, grouped according to impairment of 21OH activity. Patients The nCAG was determined in 106 congenital adrenal hyperplasia (CAH) patients and in 302 controls. The patients were divided, according to their CYP21A2 genotypes, into Groups A and B, which confer total and severe impairment of 21OH activity, respectively. Methods The inactivation pattern of the X-chromosome was studied through genomic DNA digestion with Hpa II. The CAG repeat region was amplified by polymerase chain reaction (PCR) and analysed by GeneScan. Results The nCAG and the frequency of severe skewed X-inactivation did not differ between normal women and patients. The nCAG median in genotype A was 20.7 (IQR 2.3) for Prader I + II, 22.5 (3.6) for Prader III and 21 (2.9) for Prader IV + V (P < 0.05 for Prader III and Prader IV + V). The nCAG median in genotype B was 21.3 (1.1) for Prader I + II, 20.5 (2.9) for Prader III and 22 (2.8) for Prader IV + V (P > 0.05). A significant difference was found regarding the nCAG median in patients presenting Prader III from genotypes A and B. Conclusions We observed great variability in the degree of external genitalia virilization in both CYP21A2 genotypes, and we showed that the CAG repeats of the androgen receptor gene influences this phenotypic variability.
Resumo:
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Resumo:
Background: The potential involvement of SRY in abnormal gonadal development in 45,X/46,X,der(Y) patients was proposed following the identification of SRY mutations in a few patients with Turner syndrome (TS). However, its exact etiological role in gonadal dysgenesis in patients with Y chromosome mosaicisms has not yet been clarified. Aims: It was the aim of this study to screen for allelic variation in SRY in a large cohort of patients with disorders of sex development due to chromosomal abnormalities with 45, X/46, X, der(Y) karyotype. Patients: Twenty-seven patients, 14 with TS and 13 with mixed gonadal dysgenesis (MGD), harboring 45, X/46, X, der(Y) karyotypes were selected. Methods: Genomic DNA was extracted from peripheral blood leukocytes of all patients and from gonadal tissue in 4 cases. The SRY coding region was PCR amplified and sequenced. Results: We identified only 1 polymorphism (c.561C -> T) in a 45,X/46,XY MGD patient, which was detected in blood and in gonadal tissue. Conclusion: Our results indicate that mutations in SRY are rare findings in patients with Y chromosome mosaicisms. Therefore, a significant role of mutated SRY in the etiology of gonadal dysgenesis in patients harboring 45, X/46, XY karyotype and variants seems very unlikely. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
P>Approximately 50% of all carriers of 2q21-q31 deletions present epileptic seizures. The band 2q24 constitutes the smallest commonly deleted segment in these patients, and contains the voltage-gated sodium channel genes SCN1A and SCN2A, associated with Dravet syndrome and benign familial neonatal-infantile seizures, respectively. A further putative locus involving epilepsy in the region was previously identified through disruption of the SLC4A10 gene by translocation. In the course of performing high-resolution DNA copy number analyses on syndromic mentally impaired individuals, we encountered three patients with overlapping deletions in chromosome region 2q24. Two of these patients exhibited epileptic seizures in addition to mental deficiency. The deletion in one of the epileptic patients did not include the SCN cluster, demonstrating that a less severe form of epilepsy maps to an adjacent genomic region. This second region comprises about 3 Mb and contains the candidate gene SLC4A10, providing further support for the potential role of this gene in epilepsy.
Resumo:
Non-syndromic cleft lip with or without cleft palate (NS CL/P) is a complex disease in which heritability estimates vary widely depending on the population studied. To evaluate the importance of genetic contribution to NS CL/P in the Brazilian population, we conducted a study with 1,042 families from five different locations (Santarem, Fortaleza, Barbalha, Maceio, and Rio de Janeiro). We also evaluated the role of consanguinity and ethnic background. The proportion of familial cases varied significantly across locations, with the highest values found in Santarem (44%) and the lowest in Maceio (23%). Heritability estimates showed a higher genetic contribution to NS CL/P in Barbalha (85%), followed by Santarem (71%), Rio de Janeiro (70%), Fortaleza (64%), and Maceio (45%). Ancestry was not correlated with the occurrence of NS CL/P or with the variability in heritability. Only in Rio de Janeiro was the coefficient of inbreeding significantly larger in NS CL/P families than in the local population. Recurrence risk for the total sample was approximately 1.5-1.6%, varying according to the location studied (0.6-0.7% in Maceio to 2.2-2.8% in Barbalha). Our findings show that the degree of genetic contribution to NS CL/P varies according to the geographic region studied, and this difference cannot be attributed to consanguinity or ancestry. These findings suggest that Barbalha is a promising region for genetic studies. The data presented here will be useful in interpreting results from molecular analyses and show that care must be taken when pooling samples from different populations for association studies. (C) 2011 Wiley-Liss, Inc.
Resumo:
Context: Necdin activates GNRH gene expression and is fundamental for the development, migration, and axonal extension of murine GNRH neurons. In humans, necdin plays a potential role in the hypogonadotropic hypogonadism phenotype in patients with Prader-Willi syndrome. Aim: To investigate necdin gene (NDN) variants in patients with isolated hypogonadotropic hypogonadism (IHH). Patients and methods: We studied 160 Brazilian patients with IHH, which includes 92 with Kallmann syndrome and 68 with normosmic IHH. Genomic DNA was extracted and the single NDN exon was amplified and sequenced. To measure GNRH transcriptional activity, luciferase reporter plasmids containing GNRH regulatory regions were transiently transfected into GT1-7 cells in the presence and absence of overexpressed wild-type or mutant necdin. Results: A heterozygous variant of necdin, p.V318A, was identified in a 23-year-old male with Kallmann syndrome. The p.V318A was also present in affected aunt and his father and was absent in 100 Brazilian control subjects. Previous FGFR1 gene analysis revealed a missense mutation (p.P366L) in this family. Functional studies revealed a minor difference in the activation of GNRH transcription by mutant protein compared with wild type in that a significant impairment of the necdin protein activity threshold was observed. Conclusion: A rare variant of necdin (p.V318A) was described in a family with Kallmann syndrome associated with a FGFR1 mutation. Familial segregation and in vitro analysis suggested that this non-synonymous variant did not have a direct causative role in the hypogonadism phenotype. NDN mutations are not a frequent cause of congenital IHH.