255 resultados para Genetic Complementation Test
Resumo:
With the aim of estimating the coefficient of heritability of average annual productivity of Nellore cows (COWPROD), a data set from 24,855 animals with known pedigree was analyzed. COWPROD is defined as the amount (in kilograms) of weaned calves produced yearly by one cow during her remaining time in herd ignoring a fixed period of 365 days. COWPROD was calculated regarding three standards: a) based on the post-weaning weight from the calves ignoring any kind of adjustment (COWPROD_NAJ), b) adjusted weight for the fixed effects (COWPROD_AJFIX) and c) adjusted weight for the fixed effects and for the genetic merit of the sire (COWPROD_AJFIN). The obtained heritabilities were 0.15, 0.15 and 0.16 for COWPROD_NAJ, COWPROD_AJFIX and COWPROD_AJFIN, respectively. A complete set composed of 105,158 COWPROD records on 130,740 animals in pedigree was also analyzed for predicting the genetic merit of all animals in the data set and for the calculation of the genetic, phenotypic and residual trends. Ranking correlation was high for the adjusted and non-adjusted data, yet, for some of the animals, the difference among the genetic values was large. This would be an indication that it would be better to work always with the adjusted weaning weights. The genetic trend was positive, but was of small magnitude (0.26% of the trait average) and the residual trend was negative as a consequence of the large intensification of the production system, which has been occurring in the last years in the farms studied. The phenotypic trend was also negative and intermediate between the genetic and the residual ones.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
Genetic parameters for traits related to postweaning growth in Braunvieh cattle, reared under tropical and sub-tropical conditions in Brazil, were studied. Weight traits were weight at 365 days of age (W365, N = 4055), at 450 days (W450, N = 3453), and at 550 days (W550, N = 1946), while weight gains were gain from weaning to 365 days of age (WGW365, N = 3060), from weaning to 450 days (WGW450, N = 2764), from weaning to 550 days (WGW550, N = 1531), from 365 to 550 days of age (WG365550, N = 1528), from 365 to 450 days (WG365450, N = 2401), and from 450 to 550 days (WG450550, N = 1563). A full animal model was used for estimating the variance components, using the MTDFREML software. The dataset contained 18,688 animals with phenotypic measures and 35,188 animals in the relationship matrix. Heritability estimates for postweaning weights decreased with age. For W365, W450 and W550, respectively, the direct heritability estimates were 0.29 +/- 0.061, 0.25 +/- 0.057, 0.16 +/- 0.060, maternal heritability was 0.20 +/- 0.035, 0.18 +/- 0.035, 0.13 +/- 0.052, and total heritability was 0.30, 0.35, 0.26. In this breed, maternal influence was found to be important up to 550 days of age. The greater genetic correlations between weights were observed for weights measured at shorter intervals. A large environmental effect was observed for weight gain between weaning and 550 days; this effect was greater for the gains between 365 and 550 days.
Resumo:
Aims. We derive lists of proper-motions and kinematic membership probabilities for 49 open clusters and possible open clusters in the zone of the Bordeaux PM2000 proper motion catalogue (+ 11 degrees <= delta <= + 18 degrees). We test different parametrisations of the proper motion and position distribution functions and select the most successful one. In the light of those results, we analyse some objects individually. Methods. We differenciate between cluster and field member stars, and assign membership probabilities, by applying a new and fully automated method based on both parametrisations of the proper motion and position distribution functions, and genetic algorithm optimization heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. Results. We present a catalogue comprising kinematic parameters and associated membership probability lists for 49 open clusters and possible open clusters in the Bordeaux PM2000 catalogue region. We note that this is the first determination of proper motions for five open clusters. We confirm the non-existence of two kinematic populations in the region of 15 previously suspected non-existent objects.
Resumo:
Context. Previous analyses of lithium abundances in main sequence and red giant stars have revealed the action of mixing mechanisms other than convection in stellar interiors. Beryllium abundances in stars with Li abundance determinations can offer valuable complementary information on the nature of these mechanisms. Aims. Our aim is to derive Be abundances along the whole evolutionary sequence of an open cluster. We focus on the well-studied open cluster IC 4651. These Be abundances are used with previously determined Li abundances, in the same sample stars, to investigate the mixing mechanisms in a range of stellar masses and evolutionary stages. Methods. Atmospheric parameters were adopted from a previous abundance analysis by the same authors. New Be abundances have been determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. The careful synthetic modeling of the Be lines region is used to calculate reliable abundances in rapidly rotating stars. The observed behavior of Be and Li is compared to theoretical predictions from stellar models including rotation-induced mixing, internal gravity waves, atomic diffusion, and thermohaline mixing. Results. Beryllium is detected in all the main sequence and turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip stars, but is not detected in the red giants. Confirming previous results, we find that the Li dip is also a Be dip, although the depletion of Be is more modest than for Li in the corresponding effective temperature range. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions, as does the Li dilution. A clear dispersion in the Be abundances is also observed. Theoretical stellar models including the hydrodynamical transport processes mentioned above are able to reproduce all the observed features well. These results show a good theoretical understanding of the Li and Be behavior along the color-magnitude diagram of this intermediate-age cluster for stars more massive than 1.2 M(circle dot).
Resumo:
Background: Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
Resumo:
The origin of syphilis is still controversial. Different research avenues explore its fascinating history. Here we employed a new integrative approach, where paleopathology and molecular analyses are combined. As an exercise to test the validity of this approach we examined different hypotheses on the origin of syphilis and other human diseases caused by treponemes (treponematoses). Initially, we constructed a worldwide map containing all accessible reports on palaeopathological evidences of treponematoses before Columbus's return to Europe. Then, we selected the oldest ones to calibrate the time of the most recent common ancestor of Treponema pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue in phylogenetic analyses with 21 genetic regions of different T. pallidum strains previously reported. Finally, we estimated the treponemes' evolutionary rate to test three scenarios: A) if treponematoses accompanied human evolution since Homo erectus; B) if venereal syphilis arose very recently from less virulent strains caught in the New World about 500 years ago, and C) if it emerged in the Americas between 16,500 and 5,000 years ago. Two of the resulting evolutionary rates were unlikely and do not explain the existent osseous evidence. Thus, treponematoses, as we know them today, did not emerge with H. erectus, nor did venereal syphilis appear only five centuries ago. However, considering 16,500 years before present (yBP) as the time of the first colonization of the Americas, and approximately 5,000 yBP as the oldest probable evidence of venereal syphilis in the world, we could not entirely reject hypothesis C. We confirm that syphilis seems to have emerged in this time span, since the resulting evolutionary rate is compatible with those observed in other bacteria. In contrast, if the claims of precolumbian venereal syphilis outside the Americas are taken into account, the place of origin remains unsolved. Finally, the endeavor of joining paleopathology and phylogenetics proved to be a fruitful and promising approach for the study of infectious diseases.
Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9
Resumo:
A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9) exon 3 (138 base pairs) as well as its 5' and 3' flanking intronic segments (232 bp and 220 bp, respectively) and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works.
Resumo:
Mercury (Hg) pollution is one of the most serious environmental problems. Due to public concern prompted by the symptoms displayed by people who consumed contaminated fish in Minamata, Japan in 1956, Hg pollution has since been kept under constant surveillance. However, despite considerable accumulation of knowledge on the noxious effects of ingested or inhaled Hg, especially for humans, there is virtually nothing known about the genotoxic effects of Hg. Because increased mitotic crossing over is assumed to be the first step leading to carcinogenesis, we used a sensitive short-term test (homozygotization index) to look for DNA alterations induced by Hg fumes. In one Aspergillus nidulans diploid strain (UT448//UT184), the effects of the Hg fumes appeared scattered all over the DNA, causing 3.05 times more recombination frequencies than the mean for other strains. Another diploid (Dp II- I//UT184) was little affected by Hg. This led us to hypothesize that a genetic factor present in the UT184 master strain genome, close to the nicB8 genetic marker, is responsible for this behavior. These findings corroborate our previous findings that the homozygotization index can be used as a bioassay for rapid and efficient assessment of ecotoxicological hazards.
Resumo:
In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected.
Resumo:
Purpose: To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods: Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c. 3277C>T, a nonsense mutation, and c. 3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results: We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions: COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.
Resumo:
Phytochemical studies carried out with Piperaceae species have shown great diversity of secondary metabolites among which are several displayed considerable biological activities. The species Piper tuberculatum has been intensively investigated and a series of amides have been described. For instance, (E)-piplartine showed significant cytotoxic activity against tumor cell lines, especially human leukemia cell lines; antifungal activity against Cladosporium species; trypanocidal activity and others. Considering the popular use of P. tuberculatum and the lack of pharmacological studies regarding this plant species, the mutagenic and antimutagenic effect of (E)-piplartine was evaluated by the Ames test, using the strains TA97a, TA98, TA100 and TA102 of Salmonella typhimurium. No mutagenic activity was observed for this compound.
Resumo:
Background: Persistent infection with oncogenic types of human papillomavirus (HPV) is the major risk factor for invasive cervical cancer (ICC), and non-European variants of HPV-16 are associated with an increased risk of persistence and ICC. HLA class II polymorphisms are also associated with genetic susceptibility to ICC. Our aim is to verify if these associations are influenced by HPV-16 variability. Methods: We characterized HPV-16 variants by PCR in 107 ICC cases, which were typed for HLA-DQA1, DRB1 and DQB1 genes and compared to 257 controls. We measured the magnitude of associations by logistic regression analysis. Results: European ( E), Asian-American ( AA) and African (Af) variants were identified. Here we show that inverse association between DQB1*05 ( adjusted odds ratio [ OR] = 0.66; 95% confidence interval [CI]: 0.39-1.12]) and HPV-16 positive ICC in our previous report was mostly attributable to AA variant carriers ( OR = 0.27; 95% CI: 0.10-0.75). We observed similar proportions of HLA DRB1*1302 carriers in E-P positive cases and controls, but interestingly, this allele was not found in AA cases ( p = 0.03, Fisher exact test). A positive association with DRB1*15 was observed in both groups of women harboring either E ( OR = 2.99; 95% CI: 1.13-7.86) or AA variants ( OR = 2.34; 95% CI: 1.00-5.46). There was an inverse association between DRB1*04 and ICC among women with HPV-16 carrying the 350T [83L] single nucleotide polymorphism in the E6 gene ( OR = 0.27; 95% CI: 0.08-0.96). An inverse association between DQB1*05 and cases carrying 350G (83V) variants was also found ( OR = 0.37; 95% CI: 0.15-0.89). Conclusion: Our results suggest that the association between HLA polymorphism and risk of ICC might be influenced by the distribution of HPV-16 variants.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.