196 resultados para GLYCOGEN-SYNTHASE-KINASE-3-BETA
Resumo:
Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an encloglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.
Resumo:
Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
Aims: To determine the prevalence and expression of metallo-beta-lactamases (MBL)-encoding genes in Aeromonas species recovered from natural water reservoirs in southeastern Brazil. Methods and Results: Eighty-seven Aeromonas isolates belonging to Aeromonas hydrophila (n = 41) and Aer. jandaei (n = 46) species were tested for MBL production by the combined disk test using imipenem and meropenem disks as substrates and EDTA or thioglycolic acid as inhibitors. The presence of MBL genes was investigated by PCR and sequencing using new consensus primer pairs designed in this study. The cphA gene was found in 97.6% and 100% of Aer. hydrophila and Aer. jandaei isolates, respectively, whereas the acquired MBL genes bla(IMP), bla(VIM) and bla(SPM-1) were not detected. On the other hand, production of MBL activity was detectable in 87.8% and 10.9% of the cphA-positive Aer. hydrophila and Aer. jandaei isolates respectively. Conclusions: Our results indicate that cphA seems to be intrinsic in the environmental isolates of Aer. hydrophila and Aer. jandaei in southeastern Brazil, although, based on the combined disk test, not all of them are apparently able to express the enzymatic activity. Significance and Impact of the Study: These data confirm the presence of MBL-producing Aeromonas species in natural water reservoirs. Risk of water-borne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view
Resumo:
Extended-spectrum beta-lactamases (ESBL) in enterobacteria are recognized worldwide as a great hospital problem. In this study, 127 ESBL-producing Enterobacteriaceae isolated in one year from inpatients and Outpatients at a public teaching hospital at Sao Paulo, Brazil, were Submitted to analysis by PCR with specific primers for bla(SHV), bla(TEM) and bla(CTX-M) genes. From the 127 isolates, 96 (75.6%) Klebsiella pneumoniae, 12 (9.3%) Escherichia coli, 8 (6.2%) Morganella morganii, 3 (2.3%) Proteus mirabilis, 2 (1.6%) Klebsiella oxytoca, 2 (1.6%) Providencia rettgeri, 2 (1.6%) Providencia stuartti, 1 (0.8%) Enterobacter aerogenes and 1 (0.8%) Enterobacter cloacae were identified as ESBL producers. Bla(SHV), bla(TEM), and bla(CTX-M) were detected in 63%, 17.3% and 33.9% strains, respectively. Pulsed field get eletrophoresis genotyping of K. pneumoniae revealed four main molecular patterns and 29 unrelated profiles. PCR results showed a high variety of ESBL groups among strains, in nine different species. The results Suggest the spread of resistance genes among genetically different strains of ESBL-producing K. pneumoniae in some hospital wards, and also that some strongly related strains were identified in different hospital wards, Suggesting clonal spread in the institutional environment
Resumo:
This study examined forearm vasodilatation during mental challenge and exercise in 72 obese children (OC; age = 10 +/- 0.1 years) homozygous with polymorphism in the allele 27 of the beta(2)-adrenoceptors: Gln27 (n = 61) and Glu27 (n = 11). Forearm blood flow was recorded during 3 min of each using the Stroop color-word test (MS) and handgrip isometric exercise. Baseline hemodynamic and vascular measurements were similar. During the MS, peak forearm vascular conductance was significantly greater in group Glu27 (Delta = 0.35 +/- 0.4 vs. 0.12 +/- 0.1 units, respectively, p = .042). Similar results were found during exercise (Delta = 0.64 +/- 0.1 vs. 0.13 +/- 0.1 units, respectively, p = .035). Glu27 OC increased muscle vasodilatory responsiveness upon the MS and exercise.
Resumo:
Background: The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods: First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue ( experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test ( fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) ( experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results: As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.
Resumo:
Aspergillus niveus produced high levels of alpha-amylase and glucoamylase in submerged fermentation using the agricultural residue cassava peel as a carbon source. In static conditions, the amylase production was substantially greater than in the agitated condition. The optimized culture conditions were initially at pH 5.0, 35 degrees C during 48 hours. Amylolytic activity was still improved (50%) with a mixture of cassava peel and soluble starch in the proportion 1:1 (w/w). The crude extract exhibited temperature and pH optima approximately 70 degrees C and 4.5, respectively. Amylase activity was stable for 1 h at 60 degrees C, and at pH values between 3.0 and 7.0. The enzyme hydrolysed preferentially maltose, starch, penetrose, amylose, isomaltose, maltotriose, glycogen and amylopectin, and not hydrolysed cyclodextrin (alpha and beta), trehalose and sucrose. In the first hour of reaction on soluble starch, the hydrolysis products were glucose and maltose, but after two hours of hydrolysis, glucose was the unique product formed, confirming the presence in the crude extract of an alpha-amylase and a glucoamylase.
Resumo:
Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against Gram-positive and Gram-negative bacteria, as well as fungi. In this study, the role of the disulfide bridge in the maintenance of the tertiary peptide structure of protegrin-1 and gomesin is analyzed by the structural characteristics of these peptides and two of their respective variants, gomy4 and proty4, in which the four cysteines are replaced by four tyrosine residues. The absence of disulfide bridges in gomy4 and proty4 is compensated by overall reinforcement of the original hydrogen bonds and extra attractive interactions between the aromatic rings of the tyrosine residues. The net effects on the variants with respect to the corresponding natural peptides are: i) maintenance of the original beta-hairpin conformation, with great structural similarities between the mutant and the corresponding natural peptide; ii) combination of positive F and. Ramachandran angles within the hairpin head region with a qualitative change to a combination of positive (F) and negative (.) angles, and iii) significant increase in structural flexibility. Experimental facts about the antimicrobial activity of the gomesin and protegrin-1 variants have also been established here, in the hope that the detailed data provided in the present study may be useful for understanding the mechanism of action of these peptides.
Resumo:
A meso-tetrakis(pentafluorophenyl)-chlorin with the reduced pyrrole ring linked to an isoxazolidine ring (FC) has been conjugated to four beta-cyclodextrins (CDFC). The CDFC exhibits excellent water solubility and is a potent photosensitizer towards proliferating NCTC 2544 human keratinocytes. The study by conventional steady state absorption and fluorescence spectroscopies and by time-resolved femto- and nanosecond laser flash spectroscopies suggests that in ethanol and pH 7 buffer the beta-cyclodextrins embed the highly hydrophobic tetrakis(pentafluorophenyl)-chlorin macrocycle and strongly interact with the chlorin rings in the singlet and triplet manifolds. In these solvents, femtosecond spectroscopy suggests that the conjugate undergoes a rapid relaxation in the upper excited singlet states induced by photochemical and/or conformation change(s) at a rate of about 5 ps(-1) to fluorescent states whose lifetime is similar to 8 ns. This interaction is destroyed upon addition of Triton X100 to buffer. Both FC and CDFC strongly fluoresce (Phi(F) similar to 0.5) in micelles. Similar behavior is observed at the triplet level. In ethanol and water, the initial transient triplet state absorbance decays within 1-3 mu s yielding a longer lived triplet with spectral properties indistinguishable from that of original difference absorbance spectra. The determination of the molar absorbance in the 440-460 nm region (similar to 35 000 M(-1) cm(-1)) leads to an estimate of similar to 0.2 for the triplet formation quantum yield of FC in toluene and of FC and CDFC in Triton X100 micelles. Quenching of the CDFC triplets by dioxygen in buffer produces (1)O(2) in a good yield consistent with the effective photocytotoxicity of the chlorin-cyclodextrins conjugate towards cultured NCTC 2544 human keratinocytes. By contrast, FC which aggregates in buffer produces little if any (1)O(2).
Resumo:
Galectin-3 is a beta-galactoside-binding protein that has been shown to regulate pathophysiological processes, including cellular activation, differentiation and apoptosis. Recently, we showed that galectin-3 acts as a potent inhibitor of B cell differentiation into plasma cells. Here, we have investigated whether galectin-3 interferes with the lymphoid organization of B cell compartments in mesenteric lymph nodes (MLNs) during chronic schistosomiasis, using WT and galectin-3(-/-) mice. Schistosoma mansoni synthesizes GalNAc beta 1-4(Fuc alpha 1-3) GlcNAc(Lac-DiNAc) structures (N-acetylgalactosamine beta 1-4 N-acetylglucosamine), which are known to interact with galectin-3 and elicit an intense humoral response. Antigens derived from the eggs and adult worms are continuously drained to MLNs and induce a polyclonal B cell activation. In the present work, we observed that chronically-infected galectin-3(-/-) mice exhibited a significant reduced amount of macrophages and B lymphocytes followed by drastic histological changes in B lymphocyte and plasma cell niches in the MLNs. The lack of galectin-3 favored an increase in the lymphoid follicle number, but made follicular cells more susceptible to apoptotic stimuli. There were an excessive quantity of apoptotic bodies, higher number of annexin V(+)/PI(-) cells, and reduced clearance of follicular apoptotic cells in the course of schistosomiasis. Here, we observed that galectin-3 was expressed in nonlymphoid follicular cells and its absence was associated with severe damage to tissue architecture. Thus, we convey new information on the role of galectin-3 in regulation of histological events associated with B lymphocyte and plasma cell niches, apoptosis, phagocytosis and cell cycle properties in the MLNs of mice challenged with S. mansoni.
Resumo:
Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.