120 resultados para Foot modeling
Resumo:
Chagas disease (American trypanosomiasis) is one of the most important parasitic diseases with serious social and economic impacts mainly on Latin America. This work reports the synthesis, in vitro trypanocidal evaluation, cytotoxicity assays, and molecular modeling and SAR/QSAR studies of a new series of N-phenylpyrazole benzylidene-carbohydrazides. The results pointed 6k (X = H, Y = p-NO(2), pIC(50) = 4.55 M) and 6l (X = F, Y = p-CN, pIC(50) = 4.27 M) as the most potent derivatives compared to crystal violet (pIC(50) = 3.77 M). The halogen-benzylidene-carbohydrazide presented the lowest potency whereas 6l showed the most promising pro. le with low toxicity (0% of cell death). The best equation from the 4D-QSAR analysis (Model 1) was able to explain 85% of the activity variability. The QSAR graphical representation revealed that bulky X-substituents decreased the potency whereas hydrophobic and hydrogen bond acceptor Y-substituents increased it. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Modeling volatile organic compounds (voc`s) adsorption onto cup-stacked carbon nanotubes (cscnt) using the linear driving force model. Volatile organic compounds (VOC`s) are an important category of air pollutants and adsorption has been employed in the treatment (or simply concentration) of these compounds. The current study used an ordinary analytical methodology to evaluate the properties of a cup-stacked nanotube (CSCNT), a stacking morphology of truncated conical graphene, with large amounts of open edges on the outer surface and empty central channels. This work used a Carbotrap bearing a cup-stacked structure (composite); for comparison, Carbotrap was used as reference (without the nanotube). The retention and saturation capacities of both adsorbents to each concentration used (1, 5, 20 and 35 ppm of toluene and phenol) were evaluated. The composite performance was greater than Carbotrap; the saturation capacities for the composite was 67% higher than Carbotrap (average values). The Langmuir isotherm model was used to fit equilibrium data for both adsorbents, and a linear driving force model (LDF) was used to quantify intraparticle adsorption kinetics. LDF was suitable to describe the curves.
Resumo:
Aims: It has long been demonstrated that epidermal growth factor (EGF) has catabolic effects oil bone. Thus. we examined the role of EGF in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. Main methods: The maxillary first molars of rats were moved mesially using an orthodontic appliance attached to the maxillary incisor teeth. Rats were randomly divided into 4 groups: (G1) administration of PBS (Phosphate buffer saline Solution (n = 24); (G2) administration of empty liposomes (it = 24): (Q) administration 20 rig of EGF Solution (n = 24): and (G4) 20 ng of EGF-liposomes Solution (it = 24). Each Solution was injected in the mucosa of the left first molar adjacent to the appliance. At days 5, 10, 14 and 2 1 after drug administration. 6 animals of each group were sacrificed. Histomorphometric analysis was used to quantify osteoclasts (Tartrate-resistant acid phosphatase (TRAP) + cells) and tooth movement. Using immunohistochemistry assay we evaluated the RANKL (receptor activator of nuclear factor kappa B ligand) and epidermal growth factor receptor (EGFR) expression. Key findings: The EGF-liposome administration showed an increased tooth movement and osteoclast numbers compared to controls (p<0.05). This was correlated with intense RANKL expression. Both osteoblasts and osteoclasts expressed EGFR. Significance: Local delivery of EGF-liposome stimulates, osteoclastogenesis and tooth movement. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.
Resumo:
Background. We aimed at investigating the influence of diabetic neuropathy and previous history of plantar ulcers on electromyography (EMG) of the thigh and calf and on vertical ground reaction forces during gait. Methods. This study involved 45 adults divided into three groups: a control group (n = 16), diabetic neuropathic group (n = 19) and diabetic neuropathic group with previous history of plantar ulceration (it = 10). EMG of the right vastus lateralis, lateral gastrocnemius and tibialis anterior were studied during the stance phase. The peaks and time of peak occurrence were determined and a co-activation index between tibialis anterior and lateral gastrocnemius. In order to represent the effect of the changes in EMG, the first and second peaks and the minimum value of the vertical ground reaction force were also determined. Inter-group comparisons of the electromyographical and ground reaction forces variables were made using three MANCOVA (peaks and times of EMG and peaks of force) and one ANCOVA (co-activation index). Findings. The ulcerated group presented a delayed in the time of the lateral gastrocnemius and vastus lateralis peak occurrence in comparison to control`s. The lateral gastrocnemius delay may be related to the lower second vertical peak in diabetic subjects. However, the delay of the vastus lateralis did not cause any significant change on the first vertical peak. Interpretations. The vastus lateralis and lateral gastrocnemius delay demonstrate that ulcerated diabetic neuropathic patients have a motor deficit that could compromise their ability to walk, which was partially confirmed by changes on ground reaction forces during the push-off phase. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a new neuroeconomics model for decision-making applied to the Attention-Deficit/Hyperactivity Disorder (ADHD). The model is based on the hypothesis that decision-making is dependent on the evaluation of expected rewards and risks assessed simultaneously in two decision spaces: the personal (PDS) and the interpersonal emotional spaces (IDS). Motivation to act is triggered by necessities identified in PDS or IDS. The adequacy of an action in fulfilling a given necessity is assumed to be dependent on the expected reward and risk evaluated in the decision spaces. Conflict generated by expected reward and risk influences the easiness (cognitive effort) and the future perspective of the decision-making. Finally, the willingness (not) to act is proposed to be a function of the expected reward (or risk), adequacy, easiness and future perspective. The two most frequent clinical forms are ADHD hyperactive (AD/HDhyp) and ADHD inattentive (AD/HDdin). AD/HDhyp behavior is hypothesized to be a consequence of experiencing high rewarding expectancies for short periods of time, low risk evaluation, and short future perspective for decision-making. AD/HDin is hypothesized to be a consequence of experiencing high rewarding expectancies for long periods of time, low risk evaluation, and long future perspective for decision-making.
Resumo:
Background: The purpose of this study was to investigate the ankle range of motion during neuropathic gait and its influence on plantar pressure distribution in two phases during stance: at heel-strike and at push-off. Methods: Thirty-one adults participated in this study (control group, n = 16; diabetic neuropathic group, n = 15). Dynamic ankle range of motion (electrogoniometer) and plantar pressures (PEDAR-X system) were acquired synchronously during walking. Plantar pressures were evaluated at rearfoot. midfoot and forefoot during the two phases of stance. General linear model repeated measures analysis of variance was applied to investigate relationships between groups, areas and stance phases. Findings: Diabetic neuropathy patients walked using a smaller ankle range of motion in stance phase and smaller ankle flexion at heel-strike (P = 0.0005). Peak pressure and pressure-time integral values were higher in the diabetic group in the midfoot at push-off phase when compared to heel-strike phase. On the other hand, the control group showed similar values of peak pressure in midfoot during both stance phases. Interpretation: The ankle mobility reduction observed could be associated to altered plantar pressure distribution observed in neuropathic subjects. Results demonstrated that midfoot and forefoot play a different role in subjects with neuropathy by receiving higher loads at push-off phase that are probably due to smaller ankle flexion at stance phase. This may explain the higher loads in anterior areas of the foot observed in diabetic neuropathy subjects and confirm an inadequate foot rollover associated to the smaller ankle range of motion at the heel-strike phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim was to compare there ulcer classification systems as predictors of the outcome of diabetic foot ulcers; the Wagner, the University of Texas (UT) and the size (area, depth), sepsis, arteriopathy, denervation system (S(AD)SAD) systems in specialist clinic in Brazil. Methods: Ulcer area, depth, appearance, infection and associated ischaemia and neuropathy were recorded in a consecutive series of 94 subjects. A novel score, the S(AD)SAD score, was derived from the sum of individual items of the S(AD)SAD system, and was evaluated. Follow-up was for at least 6 months. The primary outcome measure was the incidence of healing. Results: Mean age was 57.6 years; 57 (60.6%) were made. Forty-eight ulcers (51.1%) healed without surgery; 11 (12.2%) subjects underwent minor amputation. Significant differences in terms of healing were observed for depth (P = 0.002), infection (P = 0.006) and denervation (P = 0.002) using the S(AD)SAD system, for UT grade (P = 0.002) and stage (P = 0.032) and for Wagner grades (P = 0.002). Ulcers with an S(AD)SAD score of <= 9 (total possible 15) were 7.6 times more likely to heal than scores >= 10 (P < 0.001). Conclusions: All three systems predicted ulcer outcome. The S(AD)SAD score of ulcer severity could represent a useful addition to routine clinical practice. The association between outcome and ulcer depth confirms earlier reports. The association with infection was stronger than that reported from the centres in Europe or North America. The very strong association with neuropathy has only previously been observed in Tanzania. Studies designed to compare the outcome in different countries should adopt systems of classification, which are valid for the populations studied.
Resumo:
Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.
Resumo:
To test a mathematical model for measuring blinking kinematics. Spontaneous and reflex blinks of 23 healthy subjects were recorded with two different temporal resolutions. A magnetic search coil was used to record 77 blinks sampled at 200 Hz and 2 kHz in 13 subjects. A video system with low temporal resolution (30 Hz) was employed to register 60 blinks of 10 other subjects. The experimental data points were fitted with a model that assumes that the upper eyelid movement can be divided into two parts: an impulsive accelerated motion followed by a damped harmonic oscillation. All spontaneous and reflex blinks, including those recorded with low resolution, were well fitted by the model with a median coefficient of determination of 0.990. No significant difference was observed when the parameters of the blinks were estimated with the under-damped or critically damped solutions of the harmonic oscillator. On the other hand, the over-damped solution was not applicable to fit any movement. There was good agreement between the model and numerical estimation of the amplitude but not of maximum velocity. Spontaneous and reflex blinks can be mathematically described as consisting of two different phases. The down-phase is mainly an accelerated movement followed by a short time that represents the initial part of the damped harmonic oscillation. The latter is entirely responsible for the up-phase of the movement. Depending on the instantaneous characteristics of each movement, the under-damped or critically damped oscillation is better suited to describe the second phase of the blink. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
In this article, we propose a mathematical model that describes the competition between two plant virus strains (MAV and PAV) for both the host plant (oat) and their aphid vectors. We found that although PAV is transmitted by two aphids and MAV by only one, this fact, by itself, does not explain the complete replacement of MAV by PAV in New York State during the period from 1961 through 1976; an interpretation that is in agreement with the theories of A. G. Power. Also, although MAV wins the competition within aphids, we assumed that, in 1961, PAV mutated into a new variant such that this new variant was able to overcome MAV within the plants during a latent period. As shown below, this is sufficient to explain the swap of strains; that is, the dominant MAV was replaced by PAV, also in agreement with Power`s expectations.
Resumo:
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Resumo:
The influence of the aspect ratio (building height/street canyon width) and the mean building height of cities on local energy fluxes and temperatures is studied by means of an Urban Canopy Model (UCM) coupled with a one-dimensional second-order turbulence closure model. The UCM presented is similar to the Town Energy Balance (TEB) model in most of its features but differs in a few important aspects. In particular, the street canyon walls are treated separately which leads to a different budget of radiation within the street canyon walls. The UCM has been calibrated using observations of incoming global and diffuse solar radiation, incoming long-wave radiation and air temperature at a site in So Paulo, Brazil. Sensitivity studies with various aspect ratios have been performed to assess their impact on urban temperatures and energy fluxes at the top of the canopy layer. In these simulations, it is assumed that the anthropogenic heat flux and latent heat fluxes are negligible. Results show that the simulated net radiation and sensible heat fluxes at the top of the canopy decrease and the stored heat increases as the aspect ratio increases. The simulated air temperature follows the behavior of the sensible heat flux. (C) 2010 Elsevier Ltd. All rights reserved.