166 resultados para Endurance exercise training
Resumo:
A protocol of physical exercise, based on maximal oxygen uptake ((V) over dot(O2max)), for female rats before and during pregnancy was developed to evaluate the impact of a low-protein diet on oxygen consumption during gestation and growth rate of the offspring. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n = 5); trained (T, n = 5); untrained with low-protein diet (NT+LP, n = 5); and trained with low-protein diet (T+LP, n = 5). Trained rats were submitted to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 days week(-1) and 60 min day(-1), at 65% of (V) over dot(O2max)). At confirmation of pregnancy, the intensity and duration of the exercise was reduced. Low-protein groups received an 8% casein diet, and their peers received a 17% casein diet. The birthweight and growth rate of the pups up to the 90th day were recorded. Oxygen consumption ((V) over dot(O2)), CO(2) production and respiratory exchange ratio (RER) were determined using an indirect open-circuit calorimeter. Exercise training increased. (V) over dot(O2max) by about 20% when compared with the initial values (45.6 +/- 1.0 ml kg(-1) min(-1)). During gestation, all groups showed a progressive reduction in the resting (V) over dot(O2) values. Dams in the NT+LP group showed lower values of resting (V) over dot(O2) than those in the NT group. The growth rate of pups from low-protein-fed mothers was around 50% lower than that of their respective controls. The T group showed an increase in body weight from the 60th day onwards, while the NT+LP group presented a reduced body weight from weaning onwards. In conclusion, physical training attenuated the impact of the low- protein
Resumo:
The effects of exercise training on systolic blood pressure (BP), insulin sensitivity, and plasma membrane GLUT4 protein content in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. 16 SHR and 16 WKY male rats, aged 6 months, were randomized into sedentary and trained (tread-mill running, 5 days/week, 60 min/day for 10 weeks) groups (n = 8/group). At baseline, SHR had lower insulin sensitivity than WKY rats, however, there were no differences between WKY and SHR GLUT4 expression. The 10-week training reduced BP by similar to 19% in SHR, improved insulin sensitivity by similar to 24% in SHR, but not in WKY, and increased GLUT4 expression in both animal models. Compared to the sedentary group, there was an increase of GLUT4 in WKY rats by similar to 25% in the heart, by similar to 23% in the gastrocnemius, and by similar to 15% in the fat tissue. Trained SHR presented an increase in GLUT4 of similar to 21%, similar to 20%, and similar to 14%, in the same tissues, respectively. There were no differences between SHR and WKY rats in post-training GLUT4 expression. We conclude that training determined BP and insulin resistance reduction in SHR, and increased GLUT4 expression in both normotensive and hypertensive rats. However, considering the similar rise in GLUT4-induced training in SHR and WKY, it is possible that GLUT4 levels in plasma membrane fraction do not have a pivotal role in the exercise-induced improvement of insulin sensitivity in SHR.
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.
Resumo:
Ogihara CA, Schoorlemmer GHM, Levada AC, Pithon-Curi TC, Curi R, Lopes OU, Colombari E, Sato MA. Exercise changes regional vascular control by commissural NTS in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 299: R291-R297, 2010. First published April 21, 2010; doi: 10.1152/ajpregu.00055.2009.-Inhibition of the commissural nucleus of the solitary tract (commNTS) induces a fall in sympathetic nerve activity and blood pressure in spontaneously hypertensive rats (SHR), which suggests that this subnucleus of the NTS is a source of sympathoexcitation. Exercise training reduces sympathetic activity and arterial pressure. The purpose of the present study was to investigate whether the swimming exercise can modify the regional vascular responses evoked by inhibition of the commNTS neurons in SHR and normotensive Wistar-Kyoto (WKY) rats. Exercise consisted of swimming, 1 h/day, 5 days/wk for 6 wks, with a load of 2% of the body weight. The day after the last exercise session, the rats were anesthetized with intravenous alpha-chloralose, tracheostomized, and artificially ventilated. The femoral artery was cannulated for mean arterial pressure (MAP) and heart rate recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Microinjection of 50 mM GABA into the commNTS caused similar reductions in MAP in swimming and sedentary SHR (-25 +/- 6 and -30 +/- 5 mmHg, respectively), but hindlimb vascular conductance increased twofold in exercised vs. sedentary SHR (54 +/- 8 vs. 24 +/- 5%). GABA into the commNTS caused smaller reductions in MAP in swimming and sedentary WKY rats (-20 +/- 4 and -16 +/- 2 mmHg). Hindlimb conductance increased fourfold in exercised vs. sedentary WKY rats (75 +/- 2% vs. 19 +/- 3%). Therefore, our data suggest that the swimming exercise induced changes in commNTS neurons, as shown by a greater enhancement of hindlimb vasodilatation in WKY vs. SHR rats in response to GABAergic inhibition of these neurons.
Resumo:
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Resumo:
OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation. METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined. RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training. CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier Inc.
Resumo:
Aim: To investigate the effects of swimming training on the renin-angiotensin system (RAS) during the development of hypertensive disease. Main methods: Male spontaneously hypertensive rats (SHR) were randomized into: sedentary young (SY), trained young (TV), sedentary adult (SA), and trained adult (TA) groups. Swimming was performed 5 times/wk/8wks. Key findings: Trained young and adult rats showed both decreased systolic and mean blood pressure, and bradycardia after the training protocol. The left ventricular hypertrophy (LVH) was observed only in the TA group (12.7%), but there was no increase on the collagen volume fraction. Regarding the components of the RAS, TV showed lower activity and gene expression of angiotensinogen (AGT) compared to SY. The TA group showed lower activity of circulatory RAS components, such as decreased serum ACE activity and plasma renin activity compared to SA. However, depending on the age, although there were marked differences in the modulation of the RAS by training, both trained groups showed a reduction in circulating angiotensin II levels which may explain the lower blood pressure in both groups after swimming training. Significance: Swimming training regulates the RAS differently in adult and young SHR rats. Decreased local cardiac RAS may have prevented the LVH exercise-induced in the TV group. Both groups decreased serum angiotensin II content, which may, at least in part, contribute to the lowering blood pressure effect of exercise training. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Resumo:
FUNDAMENTO: Em razão das controvérsias existentes na literatura quanto aos possíveis benefícios do treinamento resistido (TR) sobre a pressão arterial de repouso (PA) e por causa da escassez de estudos com indivíduos idosos e hipertensos, o TR é pouco recomendado como forma de tratamento não-farmacológico da hipertensão arterial. OBJETIVO: Verificar os efeitos do TR progressivo sobre a pressão arterial de repouso (PA), a freqüência cardíaca (FC) e o duplo produto (DP) em idosas hipertensas controladas. MÉTODOS: Vinte mulheres idosas (66,8 ± 5,6 anos de idade) sedentárias, controladas com medicação anti-hipertensiva, realizaram 12 semanas de TR, compondo o grupo do treinamento resistido (GTR). Vinte e seis idosas (65,3 ± 3,4 anos de idade) hipertensas controladas não realizaram exercícios físicos durante a pesquisa, constituindo o grupo-controle. RESULTADOS: Houve redução significativa nos valores de repouso da pressão arterial sistólica (PAS), da pressão arterial média (PAM) e do DP após o TR. Não foram encontradas reduções significativas na pressão arterial diastólica (PAD) e na FC de repouso após o TR em ambos os grupos. A magnitude da queda no GTR foi de 10,5 mmHg, 6,2 mmHg e 2.218,6 mmHg x bpm para a PAS, PAM e o DP, respectivamente. CONCLUSÃO: O TR progressivo reduziu a PAS, PAM e o DP de repouso de idosas hipertensas, controladas com medicação anti-hipertensiva.
Resumo:
FUNDAMENTO: Os efeitos do envelhecimento no músculo papilar têm sido amplamente demonstrados, mas não há dados disponíveis sobre os efeitos do exercício nas alterações relacionadas à idade. OBJETIVO: Analisar os efeitos do envelhecimento nas propriedades morfológicas e quantitativas do músculo papilar e investigar se um programa contínuo de exercícios moderados pode exercer um efeito protetor contra as conseqüências do envelhecimento. MÉTODOS: Microscopia eletrônica foi utilizada para estudar a densidade dos miócitos, capilares e tecido conectivo e área transversal dos miócitos do músculo papilar no ventrículo esquerdo de ratos Wistar de 6 e 13 meses, não-treinados e submetidos a exercícios. RESULTADOS: Como esperado, a densidade de volume dos miócitos diminui significantemente (p<0,05) com a idade. A densidade de comprimento dos capilares também diminui com a idade, mas não de forma significante. A fração de volume intersticial do tecido do músculo capilar aumenta significantemente com a idade (P<0,05). O número de perfis de miócitos mostrou uma redução de 20% que foi acompanhada de hipertrofia dos miócitos no envelhecimento (P<0,05). Animais submetidos a uma sessão diária de 60 minutos, 5 dias/semana a 1,8 km.h-1 de corrida moderada em esteira ergométrica durante 28 semanas mostraram uma reversão de todos os efeitos do envelhecimento observados no músculo papilar. CONCLUSÃO: O presente estudo apóia o conceito de que treinamento físico de longo prazo impede as mudanças deletérias relacionadas à idade no músculo capilar.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Aims: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. Main methods: A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)ARKO mice in a C57BL6/J genetic background (5-7 mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10 mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase 11 (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. Key findings: alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in alpha(2A)/alpha(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. Significance: Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
Samogin Lopes, FA, Menegon, EM, Franchini, E, Tricoli, V, and de M. Bertuzzi, RC. Is acute static stretching able to reduce the time to exhaustion at power output corresponding to maximal oxygen uptake? J Strength Cond Res 24(6): 1650-1656, 2010-This study analyzed the effect of an acute static stretching bout on the time to exhaustion (T(lim)) at power output corresponding to (V) over dotO(2)max. Eleven physically active male subjects (age 22.3 +/- 2.8 years, (V) over dotO(2)max 2.7 +/- 0.5 L . min(-1)) completed an incremental cycle ergometer test, 2 muscle strength tests, and 2 maximal tests to exhaustion at power output corresponding to (V) over dotO(2)max with and without a previous static stretching bout. The T(lim) was not significantly affected by the static stretching (164 +/- 28 vs. 150 +/- 26 seconds with and without stretching, respectively, p = 0.09), but the time to reach (V) over dotO(2)max (118 +/- 22 vs. 102 +/- 25 seconds), blood-lactate accumulation immediately after exercise (10.7 +/- 2.9 vs. 8.0 +/- 1.7 mmol . L(-1)), and oxygen deficit (2.4 +/- 0.9 vs. 2.1 +/- 0.7 L) were significantly reduced (p <= 0.02). Thus, an acute static stretching bout did not reduce T(lim) at power output corresponding to (V) over dotO(2)max possibly by accelerating aerobic metabolism activation at the beginning of exercise. These results suggest that coaches and practitioners involved with aerobic dependent activities may use static stretching as part of their warm-up routines without fear of diminishing high-intensity aerobic exercise performance.
Resumo:
PURPOSE: Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO(2)peak), ranging from 40% to 70% VO(2)peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO(2) peak or % PT) with the ones observed at AT. METHODS: Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO(2), and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO(2)peak; 70% of VO(2)peak; AT; and PT. RESULTS: Heart rate and VO(2) at 40% and 70% of VO(2)peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO(2): -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO(2) at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO(2): + 6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. CONCLUSION: Prescribing exercise for IC patients between 40% and 70% of VO(2)peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.