133 resultados para Endogenous Cytokinins
Resumo:
Introduction: The mechanisms by which severe cholestatic hepatitis develops after liver transplantation are not fully understood. Reports on immunohistochemical distribution of hepatitis C virus (HCV) antigens are still scarce, but recently, HCV immunostaining was suggested for early diagnosis of cholestatic forms of recurrent hepatitis C in liver grafts. After purification, Rb246 pab anticore (aa1-68) yielded specific, granular cytoplasmic staining in hepatocytes. Signal amplification through the Envision-Alkaline Phosphatase System avoided endogenous biotin and peroxidase. Aims/Methods: Rb246 was applied to liver samples of explants of 12 transplant recipients, six with the most severe form of post-transplantation recurrence, severe cholestatic hepatitis (group 1) and six with mild recurrence (group 2). We also assessed immuno-reactivity at two time-points post-transplantation (median 4 and 22 months) in both groups. HCV-core Ag was semiquantified from 0 to 3+ in each time point. Serum HCV-RNA was also measured on the different time points by branched DNA. Results: In the early post-transplant time point, one patient had a mild staining (1+), two patients had a moderate staining (2+) and the other three had no staining in group 1, compared with five patients with no staining (0) and one patient with mild staining (1+) in group 2. Late post-transplant liver samples were available in nine patients, and two out of four samples in group 1 showed a mild staining, compared with no staining patients in five patients in group 2. Strikingly, on the explant samples, HCV immunostaining was strongly positive in group 1, and mildly positive in group 2. Two out of five samples showed 3+ staining, and three samples showed 2+ staining in group 1; two out of five samples showed no staining, two samples showed 1+ staining and one sample showed 2+ staining in group 2. Serum HCV-RNA was significantly higher in group 1, on both time-points post-transplantation. HCV-core Ag was not directly associated with serum HCV-RNA on the different time points. Conclusion: These preliminary results suggest that strong HCV immunostaining in the explant is predictive of more severe disease recurrence.
Resumo:
OBJECTIVE: Secretory leukocyte proteinase inhibitor (SLPI) is an endogenous proteinase inhibitor present in mucosal secretions. It also displays antimicrobial activity including anti-human immunodeficiency virus activity. This protease inhibitor is also expressed in submandibular glands (SMG), but there are few data on its expression in AIDS patients with infectious conditions. METHODS: We analyzed the expression of SLPI using immunohistochemistry in submandibular gland samples of 36 AIDS patients [10 with normal histology, 10 with chronic nonspecific sialadenitis, eight with mycobacteriosis, and eight with cytomegalovirus (CMV) infection] and 10 HIV-negative controls. The proteinase inhibitor was quantified using image analysis and expressed as % of positively stained area. RESULTS: There was a higher expression of SLPI in AIDS patients with CMV infection (% of stained area, mean +/- SD: 37.37 +/- 14.45) when compared with all other groups (P = 0.009). There were no significant differences between control subjects (22.70 +/- 9.42%) and AIDS patients without histologic alterations (18.10 +/- 7.58%), with chronic nonspecific sialadenitis (17.13 +/- 5.36%), or mycobacterial infection (21.09 +/- 4.66%). CONCLUSION: Cytomegalovirus infection increases SLPI expression in the SMG of AIDS patients. Our results reveal new insights into the pathogenic association between HIV and CMV in AIDS patients.
Resumo:
Objective: Micro RNA (miRNA) is a class of small noncoding RNA that plays a major role in the regulation of gene expression, which has been related to cancer behavior. The possibility of analyzing miRNA from the archives of pathology laboratories is exciting, as it allows for large retrospective studies. Formalin is the most common fixative used in the surgical pathology routine, and its promotion of nucleic acid degradation is well known. Our aim is to compare miRNA profiles from formalin-fixed paraffin embedded (FFPE) tissues with fresh-frozen prostate cancer tissues. Methods: The expression of 14 miRNAs was determined by quantitative real time polymerase chain reaction (qRT-PCR) in 5 paired fresh-frozen and FFPE tissues, which were representative of prostate carcinoma. Results: There was a very good correlation of the miRNA expression of miR-let7c and miR-32 between the fresh-frozen and FFPE tissues, with Pearson`s correlation coefficients of 0.927 (P = 0.023) and 0.960 (P = 0.010), respectively. For the remaining miRNAs, the correlation was good with Spearman correlation coefficient of 0.638 (P < 0.001). Conclusion: Analysis of miRNAs from routinely processed and stored FFPE prostate tissue is feasible for some miRNAs using qRT-PCR. Further studies should be conducted to confirm the reliability of using stock tissues for miRNA expression determination. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Primary Pigmented Nodular Adrenocortical Disease (PPNAD) is a rare form of bilateral adrenocortical hyperplasia that is inherited in an autosomal dominant manner and leads to ACTH-independent Cushing`s syndrome (CS). PPNAD may be isolated or associated with Carney Complex (CNC). For the diagnosis of PPNAD and CNC, in addition to the hormonal and imaging tests, searching for PRKAR1A mutations may be recommended. The aims of the present study are to discuss the clinical and molecular findings of two Brazilian patients with ACTH-independent CS due to PPNAD and to show the diagnostic challenge CS represents in childhood. Description of two patients with CS and the many sequential steps for the diagnosis of PPNAD is provided. Sequencing analysis of all coding exons of PRKAR1A in the blood, frozen adrenal nodules (patients 1 and 2) and testicular tumor (patient 1) is performed. After several clinical and laboratory drawbacks that misled the diagnostic investigation in both patients, the diagnosis of PPNAD was finally established and confirmed through pathology and molecular studies. In patient 1, sequencing of PRKAR1A gene revealed a novel heterozygous 10-bp deletion in exon 3, present in his blood, adrenal gland and testicular tumor. The etiologic diagnosis of endogenous CS in children is a challenge that requires expertise and a multidisciplinary collaboration for its prompt and correct management. Although rare, PPNAD should always be considered among the possible etiologies of CS, due to the high prevalence of this disease in this age group.
Resumo:
Neuromodulation is the branch of neurophysiology related to the therapeutic effects of electrical stimulations of the nervous system. There are currently different practical applications of neuromodulation techniques for the treatment of various neurological disorders, such as deep brain stimulation for Parkinson`s disease and repetitive transcranial magnetic stimulation (rTMS) for major depression. An increasing number of studies have been devoted to the analgesic effects of rTMS in chronic pain patients. RTMS has been used either as a therapeutic tool per se, or as a preoperative test in patients undergoing epidural precentral gyrus stimulation. High-frequency rTMS (a parts per thousand yen5 Hz) is considered to be excitatory, while low-frequency stimulation (a parts per thousand currency sign1 Hz) is considered to exert an inhibitory effect over neuronal populations of the primary motor cortex. However, other parameters of stimulation may play a central role on its clinical effects such as the type of coil, its orientation over the scalp, and the total number of rTMS sessions performed. Experimental data from animals, healthy volunteers, and neuropathic pain patients have suggested that stimulation of the primary motor cortex by rTMS is able to activate brain regions implicated in the processing of the different aspects of chronic pain, and influence brain regions involved in the endogenous opioid system. Over twenty prospective randomized sham-controlled trials have studied the analgesic effects of rTMS on chronic pain. Most of the patients included in these trials had central or peripheral neuropathic pain. Although most studies used a single session of stimulation, recent studies have shown that the analgesic effects of rTMS may outlast the stimulation period for many days when repetitive sessions are performed. This opens the possibility to use rTMS as a therapeutic tool of its own in the armamentarium against neuropathic pain.
Resumo:
Objectives: The link between obesity and endogenous estrogen with coronary artery disease (CAD) in postmenopausal women is uncertain. In this prospective study we analyzed the association of body mass index (BMI) and blood levels of estrone in postmenopausal women with known CAD or with a high risk factor score for CAD. Methods: Participants were 251 female clinic patients aged 50-90 years who were postmenopausal and not using estrogen therapy. Clinical and behavioral characteristics and fasting blood for estrone and heart disease risk factors were collected at baseline, and again at I and 2 years. Women were grouped according to their BMI (kg/m(2)) as normal (18.5 <= BMI < 25), overweight (25 <= BMI < 30) or obese (BMI >= 30), and by low and high estrone levels (< 15 and >= 15 pg/mL, respectively). Fatal and nonfatal events were recorded for 2 years after baseline. Results: Women with a low estrone level were older, thinner, and had less hypertension, diabetes, and lower triglyceride and glucose levels. BMI was positively associated with estrone levels, hypertension, and diabetes and inversely associated with HDL cholesterol. There were 14 deaths, 8 attributed to CAD. The Kaplan-Meier survival curve showed a nonsignificant trend (p = 0.074) of greater all cause mortality in women with low estrone levels (< 15 mL). In this model, adjusted for BMI, age [OR 1.08; p = 0.03], C-reactive protein [OR = 1.24; p = 0.024] and hypertension [OR = 6.22; p = 0.003] were independent predictors of all cause mortality. Conclusions: Postmenopausal women with low estrone levels (< 15 pg/mL) had a trend for increased mortality over the next 2 years. Larger, longer studies are needed. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.
Resumo:
The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.
Resumo:
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background. Ischemia-reperfusion injury is believed to be a major cause of transferred skin flap failure. Cigarette smoking is known to be associated with endogenous antioxidant depletion, hypercoagulability, and cutaneous vasoconstriction. This investigation was carried out to study possible effects of pentoxyfilline or heparin on rat skin reperfusion injury under tobacco exposure. Materials and Methods. Thirty-six rats were randomized into two major groups: 18 were exposed to cigarette smoke during a 4 wk period prior to surgery; the remaining 18 underwent a sham smoking procedure. Each group was further divided into three equal subgroups: heparin, pentoxyfilline, and saline solution. One identical skin flap was raised in each animal. The vasculature of the flap was clamped for 3 h and reperfused for 5 min. A venous blood sample was obtained from the flap after reperfusion for serum malondialdehyde (MDA) and myeloperoxidase (MPO) analysis. Flap survival was assessed 7 d after the procedure. Results. The lipid peroxidation levels and flap necrosis were significantly higher in the cigarette-smoking group skin flaps. There was also a decrease of MPO activity in this group compared with the nonsmoking group. Heparin-treated rats had significantly lower MDA levels and showed the most viable percent area among smoking rats. Conclusions. These data suggest that heparin had a significant beneficial effect both on flap survival and on the lipid peroxidation reduction after smoke exposure in the rat axial-pattern skin flap subjected to ischemia and reperfusion injury. Pharmacologic therapy may represent an alternative way to counteract tobacco effects in flap surgery in emergency situations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to verify the protein turnover rates of healthy older persons under a usual protein-rich diet and to compare values to those described in the literature. This cross-sectional study was conducted at Metabolism Unit, Univ. Hospital of the School of Medicine of Ribeirao Preto, Univ. of Sao Paulo, Brazil. In this study, 7 healthy older persons aged 65.4 +/- 2.8 y, with BMI 22.7 +/- 2.4 kg/m(2) and a mean daily protein intake of 1.34 g of protein/kg were studied. A 9-h whole-body (15)N-glycine single-dose study was performed after an overnight fast. During the study, each subject received 6 isoenergetic, isonitrogenous meals at 2-h intervals based on their average intake. Ammonium, urea, and total nitrogen were quantified and analyzed by mass spectrometry, with the determination of total protein turnover rates by the (15)N-glycine method. The results show that total nitrogen output was 3.2 +/- 0.96 g/N and intake 7.7 +/- 1 g/N, (15)N nitrogen flux was 30.6 +/- 6.3 g/9 h. Endogenous nitrogen balance was positive (4.5g +/- g/N in 9 h). In conclusion, the protein turnover of healthy older persons under a usual protein-rich diet is positive during the fed state and has synthesis and degradation rates similar to those previously described in studies involving diet adaptation periods.
Resumo:
Context: MicroRNAs (miRNAs) are small noncoding RNAs, functioning as antisense regulators of gene expression by targeting mRNA and contributing to cancer development and progression. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites of the genome. Objective: The aim of the study was to analyze the differential expression of let-7a, miR-15a, miR-16, miR-21, miR-141, miR-143, miR-145, and miR-150 in corticotropinomas and normal pituitary tissue and verify whether their profile of expression correlates with tumor size or remission after treatment. Material and Methods: ACTH-secreting pituitary tumor samples were obtained during transphenoidal surgery from patients with Cushing disease and normal pituitary tissues from autopsies. The relative expression of miRNAs was measured by real-time PCR using RNU44 and RNU49 as endogenous controls. Relative quantification of miRNA expression was calculated using the 2(-Delta Delta Ct) method. Results: We found underexpression of miR-145 (2.0-fold; P = 0.04), miR-21 (2.4-fold; P = 0.004), miR-141 (2.6-fold; P = 0.02), let-7a (3.3-fold; P = 0.003), miR-150 (3.8-fold; P = 0.04), miR-15a (4.5-fold; P = 0.03), miR-16 (5.0-fold; P = 0.004), and miR-143 (6.4-fold; P = 0.004) in ACTH-secreting pituitary tumors when compared to normal pituitary tissues. There were no differences between miRNA expression and tumor size as well as miRNA expression and ratio of remission after surgery, except in patients presenting lower miR-141 expression who showed a better chance of remission. Conclusion: Our results support the possibility that altered miRNA expression profile might be involved in corticotrophic tumorigenesis. However, the lack of knowledge about miRNA target genes postpones full understanding of the biological functions of down-regulated or up-regulated miRNAs in corticotropinomas. (J Clin Endocrinol Metab 94: 320-323, 2009)
Resumo:
The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.
Resumo:
There is a need for new adjuvants that will induce immune responses to subunit vaccines. We show that a short peptide, named Hp91, whose sequence corresponds to an area within the endogenous molecule high mobility group box (HMGB1) protein 1 potentiates cellular immune responses to peptide antigen and cellular and humoral immune responses to protein antigen in vivo. Hp91 promoted the in vivo production of the immunomodulatory cytokines, IFN-gamma, TNF-alpha, IL-6, and IL-12 (p70), as well as antigen-specific activation of CD8+ T cells. These results demonstrate the ability of a short immunostimulatory peptide to serve as an adjuvant for subunit vaccines. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.