81 resultados para Degrees of severity
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, the synthesis and structural characterization of a series of polyacrylamide hydrogels with different degrees of reticulation are reported. Although the Equilibrium Swelling Theory was recognized as a simple and reliable tool for the determination of structural hydrogels network parameters like equilibrium degree of swelling, cross-link ratio and mesh size, this is the first application of this methodology for polyacrylamide hydrogels. By changing the total monomer content in the synthesis solution (%T) from 5 to 30%, at a fixed value of cross-linker content in the total monomer amount (%C) of 5%, the final parameter obtained, the mesh size, can be tuned from 2 to 0.3 nm. It was also possible to change the mesh size (0.19-0.35) by varying %C from 5 to 12% (at %T = 20%). Scanning Electron Microscopy images for the most different formulations are shown and corroborate data obtained from the theory. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat`s calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect`s region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect`s area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat`s calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
Vanillin was found to be efficient as a deactivator of ferrylmyoglobin with a second-order rate constant of k(2) = S7 +/- 1 L mol(-1) s(-1) for reduction to metmyoglobin with Delta H(double dagger) = 58.3 +/- 0.3 kJ mol(-1) and Delta S(double dagger) = -14 +/- 1 J mol(-1) K(-1) in aqueous pH 7.4 solution at 25 degrees C. Binding to beta-lactoglobulin (AG) was found to affect the reactivity of vanillin at 25 degrees C only slightly to k(2) = 48 +/- 2 L mol(-1) s(-1) (Delta H(double dagger) = 68.4 +/- 0.4 kJ mol(-1) and Delta S(double dagger) = 17 +/- 1 J mol(-1) K(-1)) for deactivation of ferrylmyoglobin. Binding of vanillin to beta LG was found to have a binding stoichiometry vanillin/beta LG > 10 with K(A) = 6 x 10(2) L mol(-1) and an apparent total Delta H degrees of approximately -38 kJ mol(-1) and Delta S degrees = -S5.4 +/- 4J mol(-1) K(-1) at 25 degrees C and Delta C(p), (obs) = -1.02 kJ mol(-1) K(-1) indicative of increasing ordering in the complex, as determined by isothermal titration microcalorimetry. From tryptophan fluorescence quenching for beta LG by vanillin, approximately one vanillin was found to bind to each beta LG far stronger with K(A) = 5 x 10(4) L, mol(-1) and a Delta H degrees = 10.2 kJ mol(-1) and Delta S degrees = 55J mol(-1) K(-1) at 25 degrees C. The kinetic entropy/enthalpy compensation effect seen for vanillin reactivity by binding to beta LG is concluded to relate to the weakly bound vanillin oriented through hydrogen bonds on the beta LG surface with the phenolic group pointing toward the solvent, in effect making both Delta H(double dagger) and Delta S(double dagger) more positive. The more strongly bound vanillin capable of tryptophan quenching in the fiLG calyx seems less or nonreactive.