120 resultados para DEPOLARIZATION SHIFT
Resumo:
We present the temperature dependence of piezooptical coefficients for three samples of TeO(2)-GeO(2)-PbO glasses doped with 0.5% of Eu(2)O(3), 0.5% and 1% of Au(2)O(3), after different thermoannealing times. We have established that there exist two temperatures singularities - minima in the range 655-695 K and maxima - at 850 K. It is crucial that for the glasses annealed during 61 h, at temperatures about 850 K, the anomaly of piezooptical coefficient disappears. Simultaneously the minima within the range 655-695 K changed depending on the duration of the thermoannealing which leads to low temperature shift of the minima. Towards lower temperature the piezooptical maxima occurs around 850 K and disappears after the increase of the annealing time. It is also crucial that the values of the piezooptical coefficients decrease with the enhancement of the thermoannealing. The observed temperature dependence with the piezooptical coefficients has a good correlation with the temperature dependences of the DSC. We have found that the pure glasses and glasses doped only by Au(2)O(3) and Eu(2)O(3) possess the piezooptical coefficients one order less with respect to the samples possessing simultaneously Au(2)O(3) and Eu(2)O(3). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to study the effects of heat-moisture treatment (27% moisture, 100 degrees C, 16 h) and of enzymatic digestion (alpha-amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat-moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X-ray pattern from B- to A-type. HMTof SP and G starch did not change the Xray pattern (A-type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.
Resumo:
Conjugated linoleic acids (CLA) are potent anticarcinogens in animal and in vitro models as well as inhibitors of fatty acid synthesis in mammary gland, liver, and adipose tissue. Our objective was to evaluate long-term CLA supplementation of lactating dairy cows in tropical pasture on milk production and composition and residual effects posttreatment. Thirty crossbred cows grazing stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) were blocked by parity and received 150 g/d of a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of CLA (CLA treatment). Supplements of fatty acids were mixed with 4 kg/d of concentrate. Grazing plus supplements were estimated to provide 115% of the estimated metabolizable protein requirements from 28 to 84 d in milk (treatment period). The CLA supplement provided 15 g/d of cis-9, trans-11 and 22 g of cis-10, trans-12. Residual effects were evaluated from 85 to 112 d in milk (residual period) when cows were fed an 18% crude protein concentrate without added fat. The CLA treatment increased milk production but reduced milk fat concentration from 2.90 to 2.14% and fat production from 437 to 348 g/d. Milk protein concentration increased by 11.5% (2.79 to 3.11%) and production by 19% (422 to 504 g/d) in the cows fed CLA. The CLA treatment decreased milk energy concentration and increased milk volume, resulting in unchanged energy output. Milk production and protein concentration and production were also greater during the residual period for the CLA-treated cows. The CLA treatment reduced production of fatty acids (FA) of all chain lengths, but the larger effect was on short-chain FA, causing a shift toward a greater content of longer chain FA. The CLA treatment increased total milk CLA content by 30% and content of the trans-10, cis-12 CLA isomer by 88%. The CLA treatment tended to decrease the number of days open, suggesting a possible effect on reproduction. Under tropical grazing conditions, in a nutritionally challenging environment, CLA-treated cows decreased milk fat content and secreted the same amount of milk energy by increasing milk volume and milk protein production.
Resumo:
The storage of Carioca bean at 30 C and 75% relative humidity for eight months altered the solubilization pattern of hulls non-starch polysaccharides The polysaccharide physicochemical pattern changed resulting in a shift in the composition of water-soluble and water-insoluble polysaccharides caused by the insolubilization of galacturonans and xyloglucan Hulls make up 10% of whole beans which showed an increase of about 5% in water-insoluble polysaccharides and a decrease of about 1% in water-soluble polysaccharides with aging These values suggest that cotyledons and hulls together account for an increase of about 2 g of water-insoluble polysaccharides and a decrease of 1 5 g of water-soluble polysaccharides per 100 g of beans This change in the polysaccharide composition may produce a considerable difference in the dietary fiber profile The alterations observed in bean hull non-starch polysaccharide composition were similar to those previously observed in the cotyledon (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Experiments carried out to study changes induced by hard-to-cook (HTC) phenomenon in the non-starch polysaccharides of beans stored at 30 degrees C and 75% RH for 8 months showed that the development of HTC did not affect the amounts of soluble and insoluble fibre in cooked seeds but changed their carbohydrates physical properties. Aged beans non-starch polysaccharides presented lower water-solubility and underwent lower degradation of galacturonans and arabinose-rich polysaccharides when submitted to cooking. The decrease in non-starch polysaccharides water-solubility produced a shift in the polymers fractionation profile which resulted in an increase of weak and middle-alkali soluble polymers bulk as well as in their arabinose and uronic acid contents. Uronic acid contents were higher in polymers released by 1 M NaOH and in the cellulose-rich residues while the arabinose contents were higher in the mild-alkali soluble polymers of aged seeds. Methylation analysis showed no evident alterations in the xyloglucans and arabinans branching degree with beans ageing. However, both, the molecular mass of water-soluble pectins and CDTA-soluble pectins, increased. Even though changes in the non-starch polysaccharide solubility were not related to the decrease in the arabinan and xyloglucan degree of branching they may be related to the formation of new chemical interactions other than hydrogen bond. There was a correlation between acidic and neutral polysaccharides insolubilisation in beans ageing and probably in beans hardening. After processing, aged seeds present higher amounts of insoluble fibre when compared to normal beans. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages
Resumo:
The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.
Resumo:
The mechanisms underlying atorvastatin supression of ABCB1 gene expression, at transcriptional and post-transcriptional levels of ABCB1 gene in HepG2 (human hepatocellular carcinoma) cells were investigated. Quantitative real-time PCR was used to measure mRNA levels, as well as to estimate the half-life of ABCB1 mRNA. Western blotting analysis was performed in order to measure protein levels of ABCB1. Electrophoretic mobility shift assay (EMSA) was used to evaluate interactions between protein(s) and ABCB1 promoter region. Exposure to atorvastatin for 24 h resulted in a dose-dependent decrease of ABCB1 mRNA and protein levels, which was not abolished by addition of farnesyl or geranylgeranyl pyrophosphate. After removing fetal bovine serum from the media, however, ABCB1 expression was decreased by 2-fold in either HepG2 cells treated and non-treated with atorvastatin. Addition of cholesterol to serum free media abolished this latter effect on ABCB1 mRNA levels. In EMSA using a 5`-end-labeled 241 bp ABCB1 promoter DNA fragment (-198 to +43) as probe, the binding of the proteins to the probe was reduced by NF-Y, but not changed by NF kappa B, AP-1, and SP1. However, the NF-Y binding activity was similar in control and atorvastatin-treated cells. mRNA stability studies revealed that ABCB1 mRNA degradation was increased in 1, 10 and 20 mu M atorvastatin-treated versus control cells (half-lives of 2 h versus 7 h). Therefore, evidence is provided that decreased mRNA stability by atorvastatin treatment may explain the decrease in ABCB1 transcript levels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
Nitric oxide (NO) has been demonstrated to be the primary agent in relaxing airways in humans and animals. We investigated the mechanisms involved in the relaxation induced by NO-donors, ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) and sodium nitroprusside (SNP) in isolated trachea of rats contracted with carbachol in an isolated organs chamber. For instance, we verified the contribution of K(+) channels, the importance of sGC/cGMP pathway, the influence of the extra and intracellular Ca(2+) sources and the contribution of the epithelium on the relaxing response. Additionally, we have used confocal microscopy in order to analyze the action of the NO-donors on cytosolic Ca(2+) concentration. The results demonstrated that both compounds led to the relaxation of trachea in a dependent-concentration way. However, the maximum effect (E(max)) of TERPY is higher than the SNP. The relaxation induced by SNP (but not TERPY) was significantly reduced by pretreatment with ODQ (sGC inhibitor). Only TERPY-induced relaxation was reduced by tetraethylammonium (K(+) channels blocker) and by pre-contraction with 75 mM KCl (membrane depolarization). The response to both NO-donors was not altered by the presence of thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor). The epithelium removal has reduced the relaxation only to SNP, and it has no effect on TERPY. The both NO-donors reduced the contraction evoked by Ca(2+) influx, while TERPY have shown a higher inhibitory effect on contraction. Moreover, the TERPY was more effective than SNP in reducing the cytosolic Ca(2+) concentration measured by confocal microscopy. In conclusion, these results show that TERPY induces airway smooth muscle relaxation by cGMP-independent mechanisms, it involves the fluxes of Ca(2+) and K(+) across the membrane, it is more effective in reducing cytosolic Ca(2+) concentration and inducing relaxation in the rat trachea than the standard drug, SNP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to define the immunoregulatory role of prostaglandins in a mouse model of Strongyloides venezuelensis infection. Strongyloides venezuelensis induced an increase of eosinophils and mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid. Treatment with the dual cyclooxygenase (COX-1/-2) inhibitors indomethacin and ibuprofen, and the COX-2-selective inhibitor celecoxib partially blocked these cellular responses and was associated with enhanced numbers of infective larvae in the lung and adult worms in the duodenum. However, the drugs did not interfere with worm fertility. Cyclooxygenase inhibitors also inhibited the production of the T-helper type 2 (Th2) mediators IL-5, IgG1, and IgE, while indomethacin alone also inhibited IL-4, IL-10, and IgG2a. Cyclooxygenase inhibitors tended to enhance the Th1 mediators IL-12 and IFN-gamma. This shift away from Th2 immunity in cyclooxygenase inhibitor-treated mice correlated with reduced prostaglandin E(2) (PGE(2)) production in infected duodenal tissue. As PGE(2) is a well-characterized driver of Th2 immunity, we speculate that reduced production of this lipid might be involved in the shift toward a Th1 phenotype, favoring parasitism by S. venezuelensis. These findings provide new evidence that cyclooxygenase-derived lipids play a role in regulating host defenses against Strongyloides, and support the exploration of eicosanoid signaling for identifying novel preventive and therapeutic modalities against these infections.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.