297 resultados para Constrant-Led
Resumo:
Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.
Resumo:
Background: Despite significant advances in neurosurgical techniques, the median survival time of patients with glioblastoma has improved little over the past 50 years and remains less than one year. Photodynamic therapy (PDT) is presently established as a widely accepted modality for the treatment of a variety of solid tumors. Objectives: This study evaluated the effect of PDT-Photogem (R) on five glioma cell lines (U87, U138, U251, U343, and T98G). Methods: The experiments were carried out in 25-cm(3) flasks with different groups of cells seeded at a density of 1 x 10(5) cells per flask. After 3 h, the medium was removed, and the cells were incubated for 4 h with Photogem (5 mu g/mL). After the incubation time, the photosensitizer-containing medium was removed and the cells were irradiated with LED (630 nm, 25 mW/cm(2), 25 J/cm(2)) devices for 17 min. For the final steps of the PDT, the cells were returned to the incubator and kept at 37 degrees C with 5% CO(2) for 24 h, the cell viability assay was assessed using the trypan blue method, and the expression of Caspase 3 mRNA levels was assessed by real-time quantitative PCR. Results: Upon PDT-Photogem (R) treatment, viable cells, as evaluated by the trypan blue dye-exclusion method, decreased in two cell lines (U87 and U138) but not in the other three. Apoptosis, as assessed by the expression of caspase-3 mRNA levels, was at least partly involved in the death mechanism of the cell lines. Conclusions: Collectively, our results indicated that PDT-Photogem (R) can act in glioma cells, thus encouraging new experiments in this field.
Resumo:
The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.
Resumo:
Objective: We tested the hypothesis that LED phototherapy with combined 660-nm and 890-nm light will promote healing of venous ulcers that failed to respond to other forms of treatment. Background Data: A variety of dressings, growth factors, and adjunct therapies are used to treat venous ulcers, but none seems to yield satisfactory results. Materials and Methods: We used a randomized placebo-controlled double-blind study to compare a total of 20 patients divided with 32 chronic ulcers into three groups. In group 1 the ulcers were cleaned, dressed with 1% silver sulfadiazine (SDZ) cream, and treated with placebo phototherapy (<.03 J/cm(-3)) using a Dynatron Solaris 705 phototherapy research device. In group 2 the ulcers were treated similarly but received real phototherapy (3 J/cm(-2)) instead of placebo. In group 3 (controls), the ulcers were simply cleaned and dressed with SDZ without phototherapy. The ulcers were evaluated with digital photography and computer image analysis over 90 d or until full healing was attained. Results: Ulcers treated with phototherapy healed significantly faster than controls when compared at day 30 (p < 0.01), day 60 (p < 0.05), and day 90 (p < 0.001), and similarly healed faster than the placebo-treated ulcers at days 30 and 90 (p < 0.01), but not at day 60. The beneficial effect of phototherapy was more pronounced when the confounding effect of small-sized ulcers was removed from the analysis. Medium- and large-sized ulcers healed significantly faster with treatment (>= 40% rate of healing per month) than placebo or control ulcers (p < 0.05). Conclusion: Phototherapy promotes healing of chronic venous ulcers, particularly large recalcitrant ulcers that do not respond to conventional treatment.
Resumo:
Objective: Our goal was to compare the in vivo biocompatibility of dental root surfaces submitted to four different treatments after tooth avulsion followed by implantation into rat subcutaneous tissue. Background Data: Dental root surface preparation prior to replanting teeth remains a challenge for endodontists. Root surface changes made by Nd:YAG irradiation could be an alternative preparation. Methods: Forty-eight freshly extracted human dental roots were randomly divided into four treatment groups prior to implantation into rat subcutaneous tissue: G1, dry root, left in the environment up to 3 h; G2, the same treatment as G1, followed by a soaking treatment in a 2.4% sodium fluoride solution (pH 5.5); G3, root soaked in physiologic saline after avulsion for 72 h; G4, the same treatment as G1, followed by Nd:YAG laser irradiation (2.0 W, 20 Hz, 100 mJ, and 124.34 J/cm(2)). The animals were sacrificed 1, 7, and 45 d later. Histological and scanning electron microscopy analyses were done. Results: All dental roots were involved and in intimate contact with connective tissue capsules of variable thicknesses. Differences were observed in the degree of inflammation and in connective tissue maturation. In G3 the inflammatory infiltrate was maintained for 45 d, whereas the Nd:YAG laser irradiation (G4) led to milder responses. The overall aspects of the root surfaces were similar, except by the irradiated roots, where fusion and resolidification of the root surface covering the dentinal tubules were observed. Conclusion: Nd:YAG laser irradiation improves the biocompatibility of dental root and thus could be an alternative treatment of dental root prior to replantation.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Objectives: The purpose of this study was to investigate the levels of electromyographic (EMG) activation and maximal molar bite force before and after a 3-month acupuncture therapy in individuals with temporomandibular disorder (Helkimo Index) from a pool of subjects attending the Special Care Course of the Ribeirao Preto Dental School, Sao Paulo University, Brazil. Design: All 17 patients, aged between 37 and 50 years (44.2 +/- 4.84 years), with an average weight of 71 +/- 9.45 kg and height of 1.64 +/- 0.07 m, were clinically examined with regard to pain and dysfunctions of the masticatory system. The temporomandibular acupuncture points of needling were IG4, E6, E7, B2, VB14, VB20, ID18, ID19, F3, E36, VB34, E44, R3, and HN3. EMG measures were acquired before and after the treatment using a MyoSystem-BR1 electromyographer. The data collected at rest, protrusion, left and right laterality, and clenching were normalized by maximum voluntary contraction. Maximal bite force in right and left molar regions were registered using a dynamometer with a capacity of up to 1000 N, adapted for oral conditions. The highest value out of three recordings was considered to be the individual's maximal bite force. The results were statistically analyzed using the paired t test (SPSS version 15.0) during the comparison before and after treatment. Results: We found decreased EMG activity at rest, protrusion, left and right laterality, and clenching; as well as increased values of maximal bite force after acupuncture treatment. Conclusions: Acupuncture promoted alterations in the EMG activity of masticatory muscles, increased maximal molar bite force, and led to remission of the subjects' painful symptomatology.
Resumo:
Yellow fever virus (YFV) was isolated from Haemagogus leucocelaenus mosquitoes during an epizootic in 2001 in the Rio Grande do Sul State in southern Brazil In October 2008 a yellow fever outbreak was reported there with nonhuman primate deaths and human cases This latter outbreak led to intensification of surveillance measures for early detection of YFV and support for vaccination programs We report entomologic surveillance in 2 municipalities that recorded nonhuman primate deaths Mosquitoes were collected at ground level identified and processed for virus isolation and molecular analyses Eight YFV strains were isolated (7 from pools of Hg leucocelaenus mosquitoes and another from Aedes serratus mosquitoes) 6 were sequenced and they grouped in the YFV South American genotype I The results confirmed the role of Hg leucocelaenus mosquitoes as the main YFV vector in southern Brazil and suggest that Ae serratus mosquitoes may have a potential role as a secondary vector
Resumo:
This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.
Resumo:
Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.
Resumo:
The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the ""pollination syndrome"" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.
Resumo:
Background: Discussion surrounding the settlement of the New World has recently gained momentum with advances in molecular biology, archaeology and bioanthropology. Recent evidence from these diverse fields is found to support different colonization scenarios. The currently available genetic evidence suggests a ""single migration'' model, in which both early and later Native American groups derive from one expansion event into the continent. In contrast, the pronounced anatomical differences between early and late Native American populations have led others to propose more complex scenarios, involving separate colonization events of the New World and a distinct origin for these groups. Methodology/Principal Findings: Using large samples of Early American crania, we: 1) calculated the rate of morphological differentiation between Early and Late American samples under three different time divergence assumptions, and compared our findings to the predicted morphological differentiation under neutral conditions in each case; and 2) further tested three dispersal scenarios for the colonization of the New World by comparing the morphological distances among early and late Amerindians, East Asians, Australo-Melanesians and early modern humans from Asia to geographical distances associated with each dispersion model. Results indicate that the assumption of a last shared common ancestor outside the continent better explains the observed morphological differences between early and late American groups. This result is corroborated by our finding that a model comprising two Asian waves of migration coming through Bering into the Americas fits the cranial anatomical evidence best, especially when the effects of diversifying selection to climate are taken into account. Conclusions: We conclude that the morphological diversity documented through time in the New World is best accounted for by a model postulating two waves of human expansion into the continent originating in East Asia and entering through Beringia.
Resumo:
Background: Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei. Results: The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infraordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae + Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees; supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. Conclusions: Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.
Resumo:
Mercury (Hg) pollution is one of the most serious environmental problems. Due to public concern prompted by the symptoms displayed by people who consumed contaminated fish in Minamata, Japan in 1956, Hg pollution has since been kept under constant surveillance. However, despite considerable accumulation of knowledge on the noxious effects of ingested or inhaled Hg, especially for humans, there is virtually nothing known about the genotoxic effects of Hg. Because increased mitotic crossing over is assumed to be the first step leading to carcinogenesis, we used a sensitive short-term test (homozygotization index) to look for DNA alterations induced by Hg fumes. In one Aspergillus nidulans diploid strain (UT448//UT184), the effects of the Hg fumes appeared scattered all over the DNA, causing 3.05 times more recombination frequencies than the mean for other strains. Another diploid (Dp II- I//UT184) was little affected by Hg. This led us to hypothesize that a genetic factor present in the UT184 master strain genome, close to the nicB8 genetic marker, is responsible for this behavior. These findings corroborate our previous findings that the homozygotization index can be used as a bioassay for rapid and efficient assessment of ecotoxicological hazards.
Resumo:
The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.