164 resultados para Clientelism. Health. Favor. Networks
Impact of cancer-related symptom synergisms on health-related quality of life and performance status
Resumo:
To identify the impact of multiple symptoms and their co-occurrence on health-related quality of life (HRQOL) dimensions and performance status (PS), 115 outpatients with cancer, who were not receiving active cancer treatment and were recruited from, a university hospital in Sao Paulo, Brazil completed the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30, the Beck Depression Inventory, and the Brief Pain Inventory. Karnofsky Performance Status scores also were completed. Application of TwoStep Cluster analysis resulted in two distinct patient subgroups based on 113 patient experiences with pain, depression, fatigue, insomnia, constipation, lack of appetite, dyspnea, nausea, vomiting, and diarrhea. One group had multiple and severe symptom subgroup and another had Less symptoms and with lower severity. Multiple and severe symptoms had worse PS, role functioning, and physical, emotional, cognitive, social, and overall HRQOL. Multiple and severe symptom subgroup was also six times as likely as lower severity to have poor role functioning;five times more likely to have poor emotional;four times more likely to have poor PS, physical, and overall HRQOL, and three times as likely to have poor cognitive and social HRQOL, independent of gender, age, level of education, and economic condition. Classification and Regression Tree analyses were undertaken to identify which co-occurring symptoms would best determine reduction in HRQOL and PS. Pain and fatigue were identified as indicators of reduction on physical HRQOL and PS. Fatigue and insomnia were associated with reduction in cognitive; depression and pain in social; and fatigue and constipation in role functioning. Only depression was associated with reduction in overall HRQOL. These data demonstrate that there is a synergic effect among distinct cancer symptoms that result in reduction in HRQOL dimensions and PS.
Resumo:
Natural rubber (NR) is a raw material largely used by the modern industry; however, it is common that chemical modifications must be made to NR in order to improve properties such as hydrophobicity or mechanical resistance. This work deals with the correlation of properties of NR modified with dimethylaminoethylmethacrylate or methylmethacrylate as grafting agents. Dynamic-mechanical behavior and stress/strain relations are very important properties because they furnish essential characteristics of the material such as glass transition temperature and rupture point. These properties are concerned with different physical principles; for this reason, normally they are not related to each other. This work showed that they can be correlated by artificial neural networks (ANN). So, from one type of assay, the properties that as a rule only could be obtained from the other can be extracted by ANN correlation. POLYM. ENG. SCI., 49:499-505, 2009. (c) 2009 Society of Plastics Engineers
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: The Burns Specific Health Scale-Revised (BSHS-R) is of easy application, can be self-administered, and it is considered a good scale to evaluate various important life aspects of burn victims. Objectives: To translate and culturally adapt the BSHS-R into the Brazilian-Portuguese language and to evaluate the internal consistency and convergent validity of the translated BSHS-R. Methods: The cultural adaptation of the BSHS-R included translation and back-translation, discussions with professionals and patients to ensure conceptual equivalence, semantic evaluation, and pre-test of the instrument. The Final Brazilian-Portuguese Version (FBPV) of the BSHS-R was tested on a group of 115 burn patients for internal consistency and validity of construct (using the Rosenberg Self-Esteem Scale (RSES) and the Beck Depression Inventory (BDI)). Results: All values of Cronbach`s alpha were greater than. 8, demonstrating that the internal consistency of the FBPV was very high. Self-esteem was highly correlated with affect and body image (r = .59, p < .001), and with interpersonal relationships (T = .51, p < .001). Correlations between the domains of the FBPV and the BDI were all negative but larger in magnitude than the correlations with RSES. Depression was highly correlated with affect and body image (r = -77, p < .001), and with interpersonal relationships (r = -67, p < .001). Conclusions: The results showed that the adapted version of the BSHS-R into Brazilian-Portuguese fulfills the validity and reliability criteria required from an instrument of health status assessment for burn patients. (C) 2008 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
The present study sought to identify the perception of a given group of users of the Brazilian Public Health System (Sistema Unico de Saude) regarding organ donation and to implement an educational policy. Structured interviews were conducted with the aim of describing the profile of donor and nondonor subjects, the importance of organ donation, and the knowledge regarding donation and brain death. One hundred subjects were interviewed: 33% of them considered themselves potential donors; 40% were donors; 13% were nondonors; and 14% were ill-informed potential donors. However, only 40% of users have already officially expressed to their families a willingness to donate. Regarding their knowledge about the propitious moment for organ donation, only 64% of them associated the donation act with brain death. Although the present results revealed that users of the Brazilian Public Health System are prone to organ donation, there actually was a high amount of refusals, which may be due to lack of information and knowledge regarding the donation-transplantation process.
Resumo:
Objective: This investigation aimed to identify and analyze the general and specific competencies of nurses in the primary health care practice of Brazil. Design: The Delphi Technique was used as the method of study. Sample: 2 groups of participants were selected: One contained primary health care nurses (n=52) and the other specialists (n=57), including public health nurses and public or community health faculty. Measurements: 3 questionnaires were developed for the study. The first asked participants to indicate general and specific competencies, which were compiled into a list for each group. A Likert scale of 1-5 was added to these 2 lists in the second and third questionnaires. A consensus criterion of 75% for score 4 or 5 was adopted. Results: In the nurses` group, 17 general and 8 specific competencies reached the consensus criterion; 19 general and 9 specific competencies reached the criterion in the specialists` group. These competencies were classified into 10 domains: professional values, communication, teamwork, management, community-oriented, health promotion, problem solving, health care, and education and basic public health sciences. Conclusions: These competencies reflect Brazilian health policy and constitute a reference for health professional practice and education.
Resumo:
Objective The study analyzes the possibility of incorporating health promotion measures into the work processes of Family Health Program teams at a primary health care clinic in Brazil. Design and Sample We used the participatory research concept developed in 1968 by Freire. The study sample comprised the end-users of the health care system, together with 3 multidisciplinary teams. A total of 77 health care users and 55 health professionals participated in the study. Measures Culture circles composed of health care professionals, and users from different areas investigated generative topics, encoded/decoded topics, and engaged in critical probing for clarification. Topics affecting quality of life and health were heuristically evaluated. Results Although most topics were related to changing the focus of health care facilities, some were related to subsidizing community-based interventions, improving environmental strategies, individual skills, and public policies. Incorporating the novel health promotion measures and creating an expanded full-treatment clinic are important steps toward that goal. Conclusions Topics that can stimulate dialogue among the members of the culture circles include creating an environment of closer cultural contact, with repercussions for work processes, family health models, and general health models, as well as the inclusion of social aspects in the decision-making processes related to health issues that affect the living conditions of the population.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011