121 resultados para Cardiac Ischemia
Resumo:
Background - The effect of prearrest left ventricular ejection fraction ( LVEF) on outcome after cardiac arrest is unknown. Methods and Results - During a 26-month period, Utstein-style data were prospectively collected on 800 consecutive inpatient adult index cardiac arrests in an observational, single-center study at a tertiary cardiac care hospital. Prearrest echocardiograms were performed on 613 patients ( 77%) at 11 +/- 14 days before the cardiac arrest. Outcomes among patients with normal or nearly normal prearrest LVEF ( >= 45%) were compared with those of patients with moderate or severe dysfunction ( LVEF < 45%) by chi(2) and logistic regression analyses. Survival to discharge was 19% in patients with normal or nearly normal LVEF compared with 8% in those with moderate or severe dysfunction ( adjusted odds ratio, 4.8; 95% confidence interval, 2.3 to 9.9; P < 0.001) but did not differ with regard to sustained return of spontaneous circulation ( 59% versus 56%; P = 0.468) or 24-hour survival ( 39% versus 36%; P = 0.550). Postarrest echocardiograms were performed on 84 patients within 72 hours after the index cardiac arrest; the LVEF decreased 25% in those with normal or nearly normal prearrest LVEF ( 60 +/- 9% to 45 +/- 14%; P < 0.001) and decreased 26% in those with moderate or severe dysfunction ( 31 +/- 7% to 23 +/- 6%, P < 0.001). For all patients, prearrest beta-blocker treatment was associated with higher survival to discharge ( 33% versus 8%; adjusted odds ratio, 3.9; 95% confidence interval, 1.8 to 8.2; P < 0.001). Conclusions - Moderate and severe prearrest left ventricular systolic dysfunction was associated with substantially lower rates of survival to hospital discharge compared with normal or nearly normal function.
Resumo:
Background. Diving liver ischemia, the decrease in mitochondrial energy causes cellular damage that is aggravated after reperfusion. This injury can trigger a systemic inflammatory syndrome, also producing remote organ damage. Several substances have been employed to decrease this inflammatory response during liver transplantation, liver resections, and hypovolemic shock. The aim of this study was to evaluate the effects of hypertonic saline solution and the best timing of administration to prevent organ injury during experimental liver ischemia/reperfusion. Methods. Rats underwent 1 hr of warm liver ischemia followed by reperfusion. Eighty-four rats Were allocated into 6 groups: sham group, control of ischemia group) (C), pre-ischemia treated NaCl 0.9% (ISS) and NaCl 7.5% (HTS) groups, pre-repefusion ISS, and HTS groups. Blood and tissue samples were collected 4 hr after reperfusion. Results. HTS showed beneficial effects in prevention of live ischemia/reperfusion injury. HTS groups developed increases in AST and ALT levels that were significantly less than ISS groups; however, the HTS pre-reperfusion group showed levels significantly less than the HTS pre-ischemia group. No differences in IL-6 and IL-10 levels, were observed. A significant decrease in mitochondrial dysfunction as well as hepatic edema was observed in the HTS pre-reperfusion group. Pulmonary vascular permeability Was significantly less in the pre-reperfusion HTS group compared to the ISS group. No differences in myeloperoxidase activity were observed. The liver histologic score was significantly less in the pre-reperfusion HTS group compared to the pre-ischemia I-ITS group. Conclusion. HTS ameliorated local and systemic injuries in experimental liver ischemia/reperfusion. Infusion of HTS in the pre-reperfusion period may be an important adjunct to accomplish the best results. (Surgery 2010;147:415-23.)
Resumo:
Liver transplantation was first performed at the University of Sao Paulo School of Medicine in 1968. Since then, the patient waiting list for liver transplantation has increased at a rate of 150 new cases per month. Liver transplantation itself rose 1.84-fold (from 160 to 295) from 1988 to 2004. However, the number of patients on the liver waiting list jumped 2.71-fold (from 553 to 1500). Consequently, the number of deaths on the liver waiting list moved to a higher level, from 321 to 671, increasing 2.09-fold. We have applied a mathematical model to analyze the potential impact of using a donation after cardiac death (DCD) policy on our liver transplantation program and on the waiting list. Five thousand one hundred people died because of accidents and other violent causes in our state in 2004; of these, only 295 were donors of liver grafts that were transplanted. The model assumed that 5% of these grafts would have been DCD. We found a relative reduction of 27% in the size of the liver transplantation waiting list if DCD had been used by assuming that 248 additional liver transplants would have been performed annually. In conclusion, the use of DCD in our transplantation program would reduce the pressure on our liver transplantation waiting list, reducing it by at least 27%. On the basis of this model, the projected number of averted deaths is about 41,487 in the next 20 years. Liver Transpl 14:1732-1736, 2008. (C) 2008 AASLD.
Resumo:
Background: Placental insufficiency and fetal growth restriction may lead to fetal hypoxia and acidemia, which result in fetal cardiac injury. Objective: The goal of this study was to compare the levels of fetal cardiac troponin T (cTnT) at birth and fetal Doppler parameters according to fetal gender in pregnancies complicated by placental insufficiency before 34 weeks` gestation. Methods: Between March 2007 and November 2010, singleton pregnancies with placental insufficiency characterized by abnormal umbilical artery Doppler results were prospectively studied. All the patients delivered by cesarean section, and Doppler examinations were performed up to 48 hours before birth. Immediately after delivery, umbilical artery blood samples were obtained for fetal cTnT measurements. Results: Fifty high-risk pregnant women met the study criteria. The study groups were as follows: group 1 consisted of 23 male fetuses (46%) and group 2 consisted of 27 female fetuses (54%). cTnT levels were significantly higher in the group of male fetuses (median, 0.14; range, 0.01-0.85) compared with the group of female fetuses (median, 0.05; range, 0.01-0.27) (P = 0.039). In the group of male fetuses, Doppler results of the ductus venosus assessment revealed values of pulsatility index for veins >= 1.0 in 15 male fetuses (65.2%) and 9 female fetuses (33.3%) (P = 0.032). Conclusions: Fetal gender was associated with cTnT level at birth in pregnancies complicated by placental insufficiency before 34 weeks` gestation, although the Doppler findings did not support gender differences. The fetal cardiac compromise and cardiac injury may be influenced by fetal gender, suggesting differences in the cardiovascular response to fetal hypoxia. (Gend Med. 2011;8:202-208) (C) 2011 Elsevier HS Journals, Inc. All rights reserved.
Resumo:
High salt intake is a known cardiovascular risk factor and is associated with cardiac alterations. To better understand this effect, male Wistar rats were fed a normal (NSD: 1.3% NaCl), high 4 (HSD4: 4%), or high 8 (HSD8: 8%) salt diet from weaning until 18 wk of age. The HSD8 group was subdivided into HSD8, HSD8+HZ (15 mg.kg(-1).d(-1) hydralazine in the drinking water), and HSD8+LOS (20 mg.kg(-1).d(-1) losartan in the drinking water) groups. The cardiomyocyte diameter was greater in the HSD4 and HSD8 groups than in the HSD8+LOS and NSD groups. Interstitial fibrosis was greater in the HSD4 and HSD8 groups than in the HSD8+HZ and NSD groups. Hydralazine prevented high blood pressure (BP) and fibrosis, but not cardiomyocyte hypertrophy. Losartan prevented high BP and cardiomyocyte hypertrophy, but not fibrosis. Angiotensin II type 1 receptor (AT(1)) protein expression in both ventricles was greater in the HSD8 group than in the NSD group. Losartan, but not hydralazine, prevented this effect. Compared with the NSD group, the binding of an AT(1) conformation-specific antibody that recognizes the activated form of the receptor was lower in both ventricles in all other groups. Losartan further lowered the binding of the anti-AT(1) antibody in both ventricles compared with all other experimental groups. Angiotensin II was greater in both ventricles in all groups compared with the NSD group. Myocardial structural alterations in response to HSD are independent of the effect on BP. Salt-induced cardiomyocyte hypertrophy and interstitial fibrosis possibly are due to different mechanisms. Evidence from the present study suggests that salt-induced AT(1) receptor internalization is probably due to angiotensin II binding. J. Nutr. 140: 1742-1751, 2010.
Resumo:
Purpose: alpha-Melanocyte stimulating hormone protects kidneys against ischemia and sepsis induced acute kidney injury in rodents. We examined the efficacy of a-melanocyte stimulating hormone analogue AP214 to protect against acute kidney injury in higher vertebrates. Materials and Methods: We performed a prospective, blinded, randomized, placebo controlled study in 26 pigs. Laparoscopic technique was used for left nephrectomy and to induce complete warm ischemia in the right kidney for 120 minutes. AP214 (200 mu g/kg intravenously) was administered daily on the day of surgery and for 5 days thereafter. Kidney function was measured for 9 days. We measured changes in serum creatinine, estimated glomerular filtration rate, serum C-reactive protein and urine interleukin-18. Results: In the placebo control and AP214 groups mean peak serum creatinine was 10.2 vs 3.92 mg/dl and the estimated glomerular filtration rate nadir was 22.9 vs 62.6 ml per minute per kg (each p = 0.001). Functional nadir occurred at 72 vs 24 hours in the control vs AP214 groups. Estimated glomerular filtration rate outcome on postoperative day 9 was 118 vs 156 ml per minute per kg in the control vs AP214 groups (p = 0.04). Conclusions: We noted a robust renoprotective effect of AP214. A similar AP214 effect may be observed in humans. Future research includes mechanistic studies in pigs and a phase II human clinical trial of AP214 in kidney transplant and partial nephrectomy populations.
Resumo:
Introduction: Extensive experimental studies and clinical evidence (Metabolic Efficiency with Ranzolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction-36 [MERLIN TIMI-36] trial) indicate potential antiarrhythmic efficacy of the antianginal agent ranolazine. Delivery of agents into the pericardial space allows high local concentrations to be maintained in close proximity to myocardial tissue while systemic effects are minimized. Methods and Results: The effects of intrapericardial (IPC) administration of ranolazine (50-mg bolus) on right atrial and right ventricular effective refractory periods (ERP), atrial fibrillation threshold, and ventricular fibrillation threshold were determined in 17 closed-chest anesthetized pigs. IPC ranolazine increased atrial ERP in a time-dependent manner from 129 +/- 5.14 to 186 +/- 9.78 ms (P < 0.01, N = 7) but did not significantly affect ventricular ERP (from 188.3 +/- 4.6 to 201 +/- 4.3 ms (NS, N = 6). IPC ranolazine increased atrial fibrillation threshold from 4.8 +/- 0.8 to 28 +/- 2.3 mA (P < 0.03, N = 6) and ventricular fibrillation threshold (from 24 +/- 3.56 baseline to 29.33 +/- 2.04 mA at 10-20 minutes, P < 0.03, N = 6). No significant change in mean arterial pressure was observed (from 92.8 +/- 7.1 to 74.8 +/- 7.5 mm Hg, P < 0.125, N = 5, at 7 minutes). Conclusions: IPC ranolazine exhibits striking atrial antiarrhythmic actions as evidenced by increases in refractoriness and in fibrillation inducibility without significantly altering mean arterial blood pressure. Ranolazine`s effects on the atria appear to be more potent than those on the ventricles.
Resumo:
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploin-sufficient mice, a process that apparently depends on a relative deficiency of p2l activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Resumo:
Objective: Severe fetal anemia and cardiac compromise are important causes of nonimmune hydrops fetalis, and fetal recovery also depends on the degree of fetal heart compromise. The aim of this study was to report the fetal cardiac troponin T (cTnT) levels in cases of nonimmune fetal hydrops. Methods: Fetal cTnT was analyzed on 7 occasions in 5 cases of nonimmune fetal hydrops ( twice in 2 cases). Results: In 3 of 4 fetuses in which intrauterine death occurred, fetal cTnT levels were increased. The only fetus that survived in this series showed decreased levels of cTnT before birth. Conclusion: Fetal cTnT levels may be a marker of fetal prognosis in cases of fetal hydrops. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
Objective: To increase dobutamine stress echocardiography feasibility in patients with uncontrolled hypertension, we studied 729 consecutive patients referred for ischemia assessment. Methods: Patients with blood pressure ( BP) levels above 160/ 110 mm Hg were randomized to sublingual placebo or captopril ( 25 mg), and dobutamine stress echocardiography undertaken if BP decreased below 160/ 110 mm Hg after 15 minutes. Results: Of 149 patients ( 20%) with high BP levels, 104 ( 63 +/- 11 years, 51 male) were randomized. Baseline BP levels were similar for captopril ( 178 +/- 15/ 103 +/- 15 mm Hg) and placebo ( 181 +/- 17/ 103 +/- 15 mm Hg) groups. After intervention, 15 patients from captopril and 17 from placebo group had decreased BP ( 11% and 12% for systolic and 13% and 13% for diastolic BP, respectively). Five patients from placebo group ( P =.007) had to prematurely terminate the test because of hypertension ( BP > 220/ 120 mm Hg). Feasibility was similar for captopril and placebo groups ( 35% vs 25%, respectively, P = not significant). Conclusion: Although both captopril and placebo are effective in increasing dobutamine stress echocardiography feasibility in patients with uncontrolled BP, test interruption because of hypertension is less likely to occur after captopril administration.
Resumo:
The present study has investigated in conscious rats the influence of the duration of physical training sessions on cardiac autonomic adaptations by using different approaches; 1) double blockade with methylatropine and propranolol; 2) the baroreflex sensitivity evaluated by alternating bolus injections of phenylephrine and sodium nitroprusside; and 3) the autonomic modulation of HRV in the frequency domain by means of spectral analysis. The animals were divided into four groups: one sedentary group and three training groups submitted to physical exercise (swimming) for 15, 30, and 60 min a day during 10 weeks. All training groups showed similar reduction in intrinsic heart rate (IHR) after double blockade with methylatropine and propranolol. However, only 30-min and 60-min physical training presented an increase in the vagal autonomic component for determination of basal heart rate (HR) in relation to group sedentary. Spectral analysis of HR showed that the 30-min and 60-min physical training presented the reduction in low-frequency oscillations (LF = 0.20-0.75 Hz) and the increase in high-frequency oscillations (HF = 0.75-2.5 Hz) in normalized units. These both groups only showed an increased baroreflex sensitivity to tachycardiac responses in relation to group sedentary, however when compared, the physical training of 30-min exhibited a greater gain. In conclusion, cardiac autonomic adaptations, characterised by the increased predominance of the vagal autonomic component, were not proportional to the duration of daily physical training sessions. In fact, 30-minute training sessions provided similar cardiac autonomic adaptations, or even more enhanced ones, as in the case of baroreflex sensitivity compared to 60-minute training sessions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.
Resumo:
Hepatic ischemia followed by reperfusion (IR) results in mild to severe remote organ injury. Oxidative stress and nitric oxide (NO) seem to be involved in the IR injury. Our aim was to investigate the effects of liver I/R on hepatic function and lipid peroxidation, leukocyte infiltration and NO synthase (NOS) immunostaining in the lung and the kidney. We randomized 24 male Wistar rats into 3 groups: 1) control; 2) 60 minutes of partial (70%) liver 1 and 2 hours of global liver R; and 3) 60 minutes of partial (70%) liver I and 6 hours of global liver R. Groups 2 and 3 showed significant increases in plasma alanine and aspartate aminotransferase levels and in tissue malondialdehyde and myeloperoxidase contents. In the kidney, positive endothelial NOS (eNOS) staining was significantly decreased in group 3 compared with group 1. However, staining for inducible NOS (iNOS) and neuronal NOS (nNOS) did not differ among the groups. In the lung, the staining for eNOS and iNOS did not show significant differences among the groups; no positive nNOS staining was observed in any group. These results suggested that partial liver I followed by global liver R induced liver, kidney, and lung injuries characterized by neutrophil sequestration and increased oxidative stress. In addition, we supposed that the reduced NO formation via eNOS may be implicated in the moderate impairment of renal function, observed by others at 24 hours after liver I/R.