121 resultados para Anemia, iron-deficiency
Resumo:
The incentives and governance system of organizations are important in explaining how they behave in localized development processes. This article builds on the observation that the literature on territorial development does not generally address the action of social movements. At the same time, research on social movements rarely studies their effects on the territories ill which they act. This text is a contribution to fill this gap. It compares two social movement organizations: a trade union federation and a credit cooperative system operating throughout southern Brazil, Both organizations share common origins and social bases, yet their impacts oil territories have been quite different. The analysis focuses Oil the social ties that link trade unions and cooperatives to their territories to show that governance systems may explain the performance of each organization, especially with regard to their capacity for innovation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the catalytic activity of manganese and iron porphyrins, Mn and Fe(TFPP)Cl, covalently immobilized on the aminofunctionalized supports montmorillonite K-10 (MontX) and silica (SilX), where X= 1 or 2 represents the length of the organic chain (""arms"") binding the metalloporphyrin to the support. These systems were characterized by UV-vis and Electronic Paramagnetic Resonance (EPR), and they were used as catalysts in the oxidation of carbamazepine (CBZ) by the oxidants iodosylbenzene (PhIO) and hydrogen peroxide. The manganese porphyrin (MnP) catalysts proved to be efficient and selective for the epoxide, the main CBZ metabolite in natural systems. MnMont1 was an excellent catalyst when PhIO was used as oxidant, even better than the same MnP in homogeneous system. Supports bearing short ""arms"" led to the best yields. Although H2O2 is an environmentally friendly oxidant, low product yields were obtained when it was employed in CBZ oxidation. Fe(TFPP)CI immobilized on aminofunctionalized supports was not an efficient catalyst, probably due to the presence of Fe(H) species in the matrix, which led to the less reactive intermediate PFe(IV)(O). (c) 2007 Elsevier B.V. All rights reserved.
Biomimetic Oxidation of Piperine and Piplartine Catalyzed by Iron(III) and Manganese(III) Porphyrins
Resumo:
Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.
Resumo:
Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.
Resumo:
Context: Isolated heterozygous SHOX defects are the most frequent monogenic cause of short stature, and combined therapy with recombinant human GH (rhGH) and GnRH analog (GnRHa) in pubertal patients has been suggested, but there are no data on final height. Objective: The aim of the study was to analyze adult height after rhGH and GnRHa therapy in patients with SHOX haploinsufficiency. Patients: Ten peripubertal patients with isolated SHOX defects participated in the study. Intervention: Five patients were followed without treatment, and five were treated with rhGH (50 mu g/kg/d) and depot leuprolide acetate (3.75 mg/month). Main Outcome Measures: Adult height SD score (SDS) was measured. Results: All patients followed without treatment had marked downward growth shift during puberty (height SDS, -1.2 +/- 0.7 at 11.4 +/- 1.4 yr; adult height SDS, -2.5 +/- 0.5). Conversely, four of five patients treated with rhGH for 2 to 4.9 yr associated to GnRHa for 1.4 to 5.8 yr improved their height SDS from -2.3 +/- 1.3 at 11.8 +/- 2.1 yr to a final height SDS of -1.7 +/- 1.6. The difference between the mean height SDS at the first evaluation and final height SDS was statistically significant in nontreated vs. treated patients (mean height SDS change, -1.2 +/- 0.4 vs. 0.6 +/- 0.4, respectively; P < 0.001). Conclusion: A gain in adult height of patients with isolated SHOX defects treated with combined rhGH and GnRHa therapy was demonstrated for the first time, supporting this treatment for children with SHOX defects who have just started puberty to avoid the loss of growth potential observed in these patients during puberty. (J Clin Endocrinol Metab 95: 328-332, 2010)
Resumo:
Anemia screening before blood donation requires an accurate, quick, practical, and easy method with minimal discomfort for the donors. The aim of this study was to compare the accuracy of two quantitative methods of anemia screening: the HemoCue 201(+) (Aktiebolaget Leo Diagnostics) hemoglobin (Hb) and microhematocrit (micro-Hct) tests. Two blood samples of a single fingerstick were obtained from 969 unselected potential female donors to determine the Hb by HemoCue 201(+) and micro-Hct using HemataSTAT II (Separation Technology, Inc.), in alternating order. From each participant, a venous blood sample was drawn and run in an automatic hematology analyzer (ABX Pentra 60, ABX Diagnostics). Considering results of ABX Pentra 60 as true values, the sensitivity and specificity of HemoCue 201(+) and micro-Hct as screening methods were compared, using a venous Hb level of 12.0 g per dL as cutoff for anemia. The sensitivities of the HemoCue 201(+) and HemataSTAT II in detecting anemia were 56 percent (95% confidence interval [CI], 46.1%-65.5%) and 39.5 percent (95% CI, 30.2%-49.3%), respectively (p < 0.001). Analyzing only candidates with a venous Hb level lower than 11.0 g per dL, the deferral rate was 100 percent by HemoCue 201(+) and 77 percent by HemataSTAT II. The specificities of the methods were 93.5 and 93.2 percent, respectively. The HemoCue 201(+) showed greater discriminating power for detecting anemia in prospective blood donors than the micro-Hct method. Both presented equivalent deferral error rates of nonanemic potential donors. Compared to the micro-Hct, HemoCue 201(+) reduces the risk of anemic female donors giving blood, specially for those with lower Hb levels, without increasing the deferral of nonanemic potential donors.
Resumo:
Context: 21-Hydroxylase deficiency (21OHD) is caused by CYP21A2 gene mutations disrupting the adrenal 21-hydroxylase, P450c21. CYP21A2 mutations generally correlate well with the 21OHD phenotype, but some children with severe CYP21A2 mutations have residual 21-hydroxylase activity. Some hepatic P450 enzymes can 21-hydroxylate progesterone, but their physiological relevance in modifying 21OHD is not known. Objective: Wedetermined the ability of CYP2C19 and CYP3A4 to 21-hydroxylate progesterone and 17-hydroxyprogesterone (17OHP), determined the impact of the common P450 oxidoreductase (POR) variant A503V on these activities, and examined correlations between CYP2C19 variants and phenotype in patients with 21OHD. Methods: Bacterially expressed, N-terminally modified, C-His-tagged human P450c21, CYP2C19, and CYP3A4 were combined with bacterially expressed wild-type and A503V POR. The 21-hydroxylation of radiolabeled progesterone and 17OHP was assessed, and the Michaelis constant (Km) and maximum velocity (Vmax) of the reactions were measured. CYP2C19 was genotyped in 21OHD patients with genotypes predicting severe congenital adrenal hyperplasia. Results: Compared to P450c21, the Vmax/Km for 21-hydroxylation of progesterone by CYP2C19 and CYP3A4 were 17 and 10%, respectively. With both forms of POR, the Km for P450c21 was approximately 2.6 mu M, the Km for CYP2C19 was approximately 11 mu M, and the Km for CYP3A4 was approximately 110 mu M. Neither CYP2C19 nor CYP3A4 could 21-hydroxylate 17OHP. The CYP2C19 ultrametabolizer allele CYP2C19* 17 was homozygous in one of five patients with a 21OHD phenotype that was milder than predicted by the CYP21A2 genotype. Conclusions: CYP2C19 and CYP3A4 can 21-hydroxylate progesterone but not 17OHP, possibly ameliorating mineralocorticoid deficiency, but not glucocorticoid deficiency. Multiple enzymes probably contribute to extraadrenal 21-hydroxylation. (J Clin Endocrinol Metab 94: 89-95, 2009)
Resumo:
Context: 21-hydroxylase deficiency (21OHD) is a common genetic disorder caused by mutations in the CYP21A2 gene, which encodes the adrenal 21-hydroxylase, microsomal P450c21. CYP21A2 gene mutations generally correlate well with impaired P450c21 enzymatic activity and the clinical findings in 21OHD, but occasional discrepancies between genotype and phenotype suggest the effects of modifier genes. Mutations in P450 oxidoreductase (POR), the protein that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate to all microsomal P450s, can ameliorate the 21OHD phenotype and, therefore, could be a modifier gene. Objectives: We sought to identify POR variants in patients with 21OHD having discordant phenotype and genotype, and to evaluate their effect on 21-hydroxylase activity. Patients and Methods: We determined the CYP21A2 genotypes of 313 Brazilian patients with 21OHD and correlated the genotype and phenotype. The POR gene was sequenced in 17 patients with discordant genotype and phenotype. Wild-type and A503V POR, and P450c21 were expressed in bacteria and reconstituted in vitro. Activities were assayed by conversion of [C-14] progesterone to deoxycorticosterone and [H-3]17-hydroxyprogesterone to 11-deoxycortisol, and assessed by thin layer chromatography and phosphorimaging. Results: The A503V POR variant was found in 10 of 30 alleles, the same ratio as in the normal population. There were no significant differences in Michaelis constant, maximum velocity and maximum velocity/Michaelis constant of 21-hydroxylase activity supported by wild-type and A503V POR. Conclusion: The only POR missense polymorphism found in atypical 21OHD patients was A503V. Although A503V reduces P450c17 enzymatic activity, it does not influence P450c21 activity, indicating that POR A503V does not modify the 21OHD phenotype.
Resumo:
Background Women with 21-hydroxylase deficiency present much variability in external genitalia virilization, even among those with similar impairments of 21-hydroxylase (21OH) activity. Objective To evaluate if the number of CAG (nCAG) repeats of the androgen receptor gene influences the degree of external genitalia virilization in women with CYP21A2 mutations, grouped according to impairment of 21OH activity. Patients The nCAG was determined in 106 congenital adrenal hyperplasia (CAH) patients and in 302 controls. The patients were divided, according to their CYP21A2 genotypes, into Groups A and B, which confer total and severe impairment of 21OH activity, respectively. Methods The inactivation pattern of the X-chromosome was studied through genomic DNA digestion with Hpa II. The CAG repeat region was amplified by polymerase chain reaction (PCR) and analysed by GeneScan. Results The nCAG and the frequency of severe skewed X-inactivation did not differ between normal women and patients. The nCAG median in genotype A was 20.7 (IQR 2.3) for Prader I + II, 22.5 (3.6) for Prader III and 21 (2.9) for Prader IV + V (P < 0.05 for Prader III and Prader IV + V). The nCAG median in genotype B was 21.3 (1.1) for Prader I + II, 20.5 (2.9) for Prader III and 22 (2.8) for Prader IV + V (P > 0.05). A significant difference was found regarding the nCAG median in patients presenting Prader III from genotypes A and B. Conclusions We observed great variability in the degree of external genitalia virilization in both CYP21A2 genotypes, and we showed that the CAG repeats of the androgen receptor gene influences this phenotypic variability.
Resumo:
P>Background Congenital adrenal hyperplasia caused by classic 21-hydroxylase deficiency (21OHD) is an autosomal recessive disorder with a high prevalence of asymptomatic heterozygote carriers (HTZ) in the general population, making case detection desirable by routine methodology. HTZ for classic and nonclassic (NC) forms have basal and ACTH-stimulated values of 17-hydroxyprogesterone (17OHP) that fail to discriminate them from the general population. 21-Deoxycortisol (21DF), an 11-hydroxylated derivative of 17OHP, is an alternative approach to identify 21OHD HTZ. Objective To determine the discriminating value of basal and ACTH-stimulated serum levels of 21DF in comparison with 17OHP in a population of HTZ for 21OHD (n = 60), as well as in NC patients (n = 16) and in genotypically normal control subjects (CS, n = 30), using fourth generation tandem mass spectrometry after HPLC separation (LC-MS/MS). Results Basal 21DF levels were not different between HTZ and CS, but stimulated values were increased in the former and virtually nonresponsive in CS. Only 17 center dot 7% of the ACTH-stimulated 21DF levels overlapped with CS, when compared to 46 center dot 8% for 17OHP. For 100% specificity, the sensitivities achieved for ACTH-stimulated 21DF, 17OHP and the quotient [(21DF + 17OHP)/F] were 82 center dot 3%, 53 center dot 2% and 87%, using cut-offs of 40, 300 ng/dl and 46 (unitless), respectively. Similar to 17OHP, ACTH-stimulated 21DF levels did not overlap between HTZ and NC patients. A positive and highly significant correlation (r = 0 center dot 846; P < 0 center dot 001) was observed between 21DF and 17OHP pairs of values from NC and HTZ. Conclusion This study confirms the superiority of ACTH-stimulated 21DF, when compared to 17OHP, both measured by LC-MS/MS, in identifying carriers for 21OHD. Serum 21DF is a useful tool in genetic counselling to screen carriers among relatives in families with affected subjects, giving support to molecular results.
Resumo:
Context: Although numerous reports of mutations in GH1 and GHRHR (GHRH receptor) causing isolated GH deficiency (IGHD) have been published, mutations in GHRH itself have not been hitherto reported but are obvious candidates for GH deficiency. Objective: The aim of this study was to identify mutations in GHRH in a large cohort of patients with IGHD. Patients and Methods: DNA was isolated from 151 patients diagnosed with IGHD at national and international centers. Seventy-two patients fulfilled all the following criteria: severe short stature (height SD score <= -2.5), low peakGHafter stimulation (peak <= 5 ng/ml), eutopic posterior pituitary lobe, and absence of mutations in GH1 and GHRHR and therefore were strong candidates for GHRH mutations. The coding sequence and splice sites of GHRH were amplified by PCR with intronic primers and sequenced. Results: In five of 151 patients (four of 42 from Brazil), the GHRH c. 223 C>T, p. L75F change was identified in heterozygosity. This variant has been previously reported as a polymorphism and is more frequent in African than European and Asian populations. Six allelic variants (five novel) that do not predict change of amino acids or splice sites were identified in five patients: c. 147 C>T, p.S49S, IVS1 -70 G>A, IVS1 -74 T>C, IVS3 -47 del1, and IVS3 +7 G>A/IVS3 + 41 G>A. No functional mutations were found in this cohort. Conclusions: GHRH mutations were not identified in a selected cohort of patients with IGHD, suggesting that, if they exist, they may be an extremely rare cause of IGHD. Other, as-yet-unidentified genetic factors may be implicated in the genetic etiology of IGHD in our cohort. (J Clin Endocrinol Metab 96: E1457-E1460, 2011)
Resumo:
Purpose: The aim of this study was to evaluate the influence of estrogen deficiency on bone around osseointegrated dental implants in a rat jaw model. Materials and Methods: This study used 16 female rats that had the first molars bilaterally extracted and were allowed to heal for 30 days before implant placement. Sixty days after implant placement, the animals were randomly subjected to sham surgery or ovariectomy (OVX). The animals were euthanized 90 days after OVX. Bone-to-implant contact, bone area fraction occupancy between implant threads, mineral density, turnover markers, and cells positive for tartrate-resistant acid phosphatase were assessed for the 2 groups. Results: The results showed that OVX group presented a decrease of systemic bone density, alterations in bone turnover markers, and an increase of cells positive for tartrate-resistant acid phosphatase compared with the sham-surgery group. However, no difference relative to bone-to-implant contact and bone area fraction occupancy was observed between groups. Conclusions: The findings of this study demonstrate that estrogen deficiency may not be considered a risk factor for osseointegrated implant failure in jaw bone. (C) 2011 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 69:1911-1918, 2011
Resumo:
Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Resumo:
One limiting factor for automated two-red blood cells collections (2-RBC) is its potential iron depletion. We analyzed hematological parameters and iron balance before, two and four months after 2-RBC of 96 non-supplemented male donors. Four months after 2-RBC, ferritin level was significantly lower (P < 0.01) than baseline levels and the number of donors who presented ferritin <30 ng/ml increased from 18 to 47. We concluded that four months was not sufficient for iron recuperation in the population studied. In an attempt to avoid iron depletion after 2-RBC, we recommend augmentation in the interval between blood donations and pre-donation ferritin measurement. (C) 2009 Published by Elsevier Ltd.