221 resultados para 5-HT RECEPTORS
Resumo:
Introduction: Prune belly syndrome (PBS) presents with large-capacity bladders, high compliance and post-void residual volumes. Operative and conservative treatments are controversial. When histologically compared to normal bladder, bladder outlet obstruction results in an up- or down-regulation of adrenoceptors. Our goal was to study the immunoexpression of adrenoceptors in detrusor from patients with PBS. Materials and methods: Bladder domes from PBS patients (n = 14) were studied (PBG). For normal controls, bladder specimens were obtained at adult surgery (n = 13) (CG1) and at child autopsy (n = 5) (CG2). Staining was performed using antibodies to alpha 1a, alpha 1b, alpha 1d and beta 3 adrenoceptors. Five to 10 images were captured on an optic microscope with a digital camera and analysed with Photoshop(R). The immunocyhistochemical index with arbitrary units was calculated and compared. Results: Mean age was 1.28, 64 and 1.41 years for PBG, CG1 and CG2, respectively. The immunohistochemical index with arbitrary units of alpha 1a receptors was 0.06 in PBG, 0.16 in CG1 and 0.14 in CG2 (p = 0.008); of alpha 1b 0.06, 0.06 and 0.07 (p = 0.781); and of alpha 1d 0.04, 0.04 and 0.05 (p = 0.618). Regarding beta 3 the respective values were 0.07, 0.14 and 0.10 (p = 0.378). Conclusion: Our results show a decrease in ala-adrenoceptor immunostaining intensity in detrusor from children with PBS. Further in vitro studies are needed to determine whether these observations are physiologically significant. (C) 2009 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose In animal experiments paclitaxel oleate associated with a cholesterol-rich nanoemulsion concentrated in the neoplastic tissues and showed reduced toxicity and increased antitumor activity compared with paclitaxel-Cremophor EL. Here, a clinical study was performed in breast cancer patients to evaluate the tumoral uptake, pharmacokinetics and toxicity of paclitaxel associated to nanoemulsions. Methods Twenty-four hours before mastectomy [(3)H]paclitaxel oleate associated with [(14)C]-cholesteryl oleatenanoemulsion or [(3)H]- paclitaxel in Cremophor EL were injected into five patients for collection of blood samples and fragments of tumor and normal breast tissue. A pilot clinical study of paclitaxel-nanoemulsion administered at 3-week intervals was performed in four breast cancer patients with refractory advanced disease at 175 and 220 mg/m(2) dose levels. Results T(1/2) of paclitaxel oleate associated to the nanoemulsion was greater than that of paclitaxel (t(1/2) = 15.4 +/- 4.7 and 3.5 +/- 0.80 h). Uptake of the [(14)C]-cholesteryl ester nanoemulsion and [(3)H]- paclitaxel oleate by breast malignant tissue was threefold greater than the normal breast tissue and toxicity was minimal at the two dose levels. Conclusions Our results suggest that the paclitaxel-nanoemulsion preparation can be advantageous for use in the treatment of breast cancer because the pharmacokinetic parameters are improved, the drug is concentrated in the neoplastic tissue and the toxicity of paclitaxel is reduced.
Resumo:
OBJECTIVE: Investigate the effects of antenatal steroids and tracheal occlusion on pulmonary expression of vascular endothelial growth factor receptors in rats with nitrofen-induced congenital diaphragmatic hernia. STUDY DESIGN: Fetuses were exposed to nitrofen at embryonic day 9.5. Subgroups received dexamethasone or were operated on for tracheal occlusion, or received combined treatment. Morphologic variables were recorded. To analyze vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, we performed Western blotting and immunohistochemistry. Morphologic variables were analyzed by analysis of variance and immunohistochemistry by Kruskal-Wallis test. RESULTS: Congenital diaphragmatic hernia decreased body weight, total lung weight, and lung-to-body weight ratio. Tracheal occlusion increased total lung weight and lung-to-body weight ratio (P < .05). Fetuses with congenital diaphragmatic hernia had reduced vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 2 expression, whereas steroids and tracheal occlusion increased their expression. Combined treatment increased expression of receptors, but had no additive effect. CONCLUSION: Vascular endothelial growth factor signaling disruption may be associated with pulmonary hypertension in congenital diaphragmatic hernia. Tracheal occlusion and steroids provide a pathway for restoring expression of vascular endothelial growth factor receptors.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.
Resumo:
The lateral septal area (LSA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the LSA of unanesthetized rats caused pressor responses that are mediated by acute vasopressin release. Magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) of the hypothalamus synthesize vasopressin. In the present work, we studied which of these nuclei is involved in the pressor pathway activated by unilateral NA injection into the LSA as well as the local neurotransmitter involved. Chemical ablation of the SON by unilateral injection of the nonspecific synapses blocker cobalt chloride (1 mM/100 nl) did not affect the pressor response evoked by NA (21 nmol/200 nl) microinjection into the LSA. However, the response to NA was blocked when cobalt chloride (1 mM/100 nl) was microinjected into the PVN, indicating that this hypothalamic nucleus is responsible for the mediation of the pressor response. There is evidence in the literature pointing to glutamate as a putative neurotransmitter activating magnocellular neurons. Pretreatment of the PVN with the selective non-N-methyl-D-asparate (NMDA) antagonist NBQX (2 nmol/100 nl) blocked the pressor response to NA microinjected into the LSA, whereas pretreatment with the selective NMDA antagonist LY235959 (2 nmol/100 nl) did not affect the response to NA. Our results implicate the PVN as the final structure in the pressor pathway activated by the microinjection of NA into the LSA. They also indicate that local glutamatergic synapses and non-NMDA glutamatergic receptors mediate the response in the PVN. (c) 2008 Wiley-Liss, Inc.
Resumo:
There are contradictory results concerning the effects of systemic injections of cannabinoid agonists in anxiety-induced behavioral changes. Direct drug administration into brain structures related to defensive responses could help to clarify the role of cannabinoids in these changes. Activation of cannabinoid CB, receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test. Male Wistar rats (n = 5-9/group) with cannulae aimed at the dorsolateral periaqueductal gray were water deprived for 24 h and pre-exposed to the apparatus where they were allowed to drink for 3 min. After another 24 h-period of water deprivation, they received the microinjections and, 10 min later, were placed into the experimental box. in this box an electrical shock (0.5 nnA, 2 s) was delivered in the spout of a drinking bottle at every twenty licks. The animals received a first microinjection of vehicle (0.2 mu l) or AM251 (a cannabinoid CB1 receptor antagonist; 100 pmol) followed, 5 min later, by a second microinjection of vehicle, anandamide (an endocannabinoid, 5 pmol), AM404 (an inhibitor of anandamide uptake, 50 pmol) or URB597 (an inhibitor of Fatty Acid Amide Hydrolase, 0.01 or 0.1 nmol). Anandamide, AM404 and URB597 (0.01 nmol) increased the total number of punished licks. These effects were prevented by AM251. The results give further support to the proposal that facilitation of CB1 receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Rationale Conditioned fear to context causes freezing and cardiovascular changes in rodents and has been used to measure anxiety. It also activates the dorsolateral column of the periaqueductal gray (dlPAG). Microinjections of cannabinoid agonists into the dlPAG produced anxiolytic-like effects in the elevated plus maze, but the effects of these treatments on fear conditioning remains unknown. Objective The objective of this study was to verify if intra-dlPAG injection of the CB1 cannabinoid receptor agonist anandamide (AEA) or the anandamide transport inhibitor AM404 would attenuate behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats submitted to a contextual fear-conditioning paradigm. Materials and methods Male Wistar rats with cannulae aimed at the dlPAG were re-exposed to a chamber where they had received footshocks 48 h before. Fifteen minutes before the test, the animals received a first intra-dlPAG injection of vehicle or AM251, a CB1 receptor antagonist (100 pmol/200 nl), followed 5 min later by vehicle, AEA (5 pmol/200 nl) or AM404 (50 pmol/200 nl). Freezing and cardiovascular responses were recorded for 10 min. Results Freezing and cardiovascular responses were reduced by administration of either AEA or AM404 into the dlPAG before re-exposition to the aversively conditioned context. These effects were abolished when the animals were locally pretreated with AM251. The latter drug, even at a higher dose (300 pmol), was ineffective when administered alone into the dlPAG. Conclusion The results suggest that facilitation of endocannabinoid-mediated neurotransmission in the dlPAG, through activation of local CB1 receptors, attenuates the expression of contextual fear responses.
Resumo:
The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB(1) receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB(1) receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB(1) receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB(1) receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB(1) receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB(1) receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.
Resumo:
In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals. J. Leukoc. Biol. 87: 885-893; 2010.
Resumo:
P>In the present study, we investigated the effects of inhibition of the lateral hypothalamus (LH) neurotransmission with bilateral microinjection of CoCl(2), a non-selective blocker of neurotransmission, on modulation of cardiac baroreflex responses in conscious rats as well as the involvement of LH glutamatergic neurotransmission in this modulation. Reflex bradycardiac and tachycardiac responses to blood pressure increases (following i.v. infusion of phenylephrine) or decreases (following i.v. infusion of sodium nitroprusside) were investigated in conscious male Wistar rats. Responses were evaluated before and after microinjection of 1 nmol/100 nL CoCl(2), 2 nmol/100 nL 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulphonamide (NBQX; a selective non-N-methyl-d-aspartate (NMDA) glutamate receptor antagonist) or different doses (2, 4 or 8 nmol/100 nL) of the selective NMDA glutamate receptor antagonist LY235959. Microinjection of CoCl(2) into the LH had no effect on the tachycardiac baroreflex response, but did evoke a decrease in the reflex bradycardia caused by increases in blood pressure. Microinjection of NBQX into the LH had a similar effect on reflex bradycardia as CoCl(2), but had no effect on the tachycardiac response. Microinjection of increasing doses of LY235959 into the LH had no effect on the cardiac baroreflex response. In conclusion, the data suggest that the LH has a tonic facilitatory influence on the parasympathetic component of the baroreflex. The results also indicate that this facilitatory influence is mediated by local LH glutamatergic neurotransmission through non-NMDA glutamatergic receptors.
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.