102 resultados para vertebrate hosts
Resumo:
The prevalence of the parasite Aporobopyrus curtatus in Petrolisthes armatus from southern Brazil was determined, and the effect the parasite had on host reproduction was evaluated. Of all 775 crabs sampled in Araca region from March 2005 to July 2006, 3.2% presented bopyrid parasites. All the parasitized individuals had one branchial chamber occupied by two mature parasites, with no preference for the right or left chamber. Male and female hosts were infested in equal proportions. Parasitized juveniles, large individuals and ovigerous females were not found in our study. The absence of parasitized ovigerous females seems to be insufficient evidence to support the hypothesis of parasitic castration and would require a histological study to confirm their reproductive death. The percentage of infestation observed in our study (3.1%) is lower than the one found in other studies and it could indicate the existence of factor(s) regulating the density of A. curtatus in the Araca region. At least in this population, the low but constant presence of the bopyrid A. curtatus population did not appear to have a negative effect on the porcellanid population, and parasitized individuals did not play a significant role in the natural history of P. armatus.
Resumo:
Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus. However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largely unknown. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different populations (reared for similar to 30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts, indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.
Resumo:
The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na(+), K(+))-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na(+) and K(+) of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na(+),K(+))-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na(+) and K(+). However, in contrast to Na(+), a threshold K(+) concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations. Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na(+),K(+))-ATPase compared to the vertebrate enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioides brasiliensis infections have been little studied in wild and/or domestic animals, which may represent an important indicator of the presence of the pathogen in nature. Road-killed wild animals have been used for surveillance of vectors of zoonotic pathogens and may offer new opportunities for eco-epidemiological studies of paracoccidiodomycosis (PCM). The presence of P. brasiliensis infection was evaluated by Nested-PCR in tissue samples collected from 19 road-killed animals; 3 Cavia aperea (guinea pig), 5 Cerdocyon thous (crab-eating-fox), 1 Dasypus novemcinctus (nine-banded armadillo), 1 Dasypus septemcinctus (seven-banded armadillo), 2 Didelphis albiventris (white-eared opossum), 1 Eira barbara (tayra), 2 Gallictis vittata (grison), 2 Procyon cancrivorus (raccoon) and 2 Sphiggurus spinosus (porcupine). Specific P. brasiliensis amplicons were detected in (a) several organs of the two armadillos and one guinea pig, (b) the lung and liver of the porcupine, and (c) the lungs of raccoons and grisons. P. brasiliensis infection in wild animals from endemic areas might be more common than initially postulated. Molecular techniques can be used for detecting new hosts and mapping `hot spot` areas of PCM.
Resumo:
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Resumo:
Respiratory viruses can cause significant morbidity in immunocompromised hosts. Human metapneumovirus (hMPV) has been increasingly associated with lower respiratory tract infection in hematopoietic SCT (HSCT) recipients, with mortality rates up to 50%. No data on the occurrence of hMPV infection in HSCT recipients have been reported in the southern hemisphere. We conducted a retrospective study including 228 nasal wash samples from 153 HSCT recipients with respiratory symptoms during 2001, 2002 and 2003. hMPV was detected by real-time PCR with primers complementary to the nucleocapsid region of hMPV genome. Eleven of the 153 patients (7.2%) acquired hMPV infection during the study period (6.4% in 2001, 4.7% in 2002 and 11.1% in 2003). Among the 11 HSCT recipients with hMPV infection, 1 died 8 days after the diagnosis, but the role of hMPV in the patient`s death could not be established. In 2001 and 2003, hMPV group A prevailed over group B. In 2002, both groups were detected equally. hMPV infections were diagnosed in late winter and spring. The frequency of hMPV infection in HSCT recipients living in Brazil was similar to those observed in the northern hemisphere. Sensitive techniques to detect hMPV should be included in the diagnostic assessment of HSCT recipients with respiratory symptoms.
Resumo:
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.
Resumo:
The present study, investigated the mechanisms involved in the immune responses of Major Histocompatibility Complex class I or class II knockout mice, following Strongyloides venezuelensis infection. Wild-type C57BL/6 (WT), MHC II(-/-) and MHC I(-/-) mice were individually inoculated with 3000 larvae (U) of S. venezuelensis and sacrificed on days 1, 3, 5, 8, 13 and 21 post-infection (p.i.). Samples of blood, lungs and small intestines were collected. The tissue samples were stained with hematoxylineosin for the pathological analysis. The presence of the parasite was demonstrated by immunoperoxidase analysis. MHC II(-/-) mice presented a significantly higher number of adult worms recovered from the small intestine on day 5 p.i. and presented elevated numbers of eggs in the feces. The infection by S. venezuelensis was completely eliminated 13 days after infection in WT as well as in MHC I(-/-) mice. In MHC II(-/-) mice, eggs and adult worms were still found on day 21 p.i., however, there was a significant reduction in their numbers. In the lung, the parasite was observed in MHC I(-/-) on day 1 p.i. and in MHC II(-/-) mice on days 1 and 5 p.i. In the small intestine of WT mice, a larger number of parasites were observed on day 8 p.i. and their absence was observed after day 13 p.i. Through immunohistochemistry analysis, the parasite was detected in the duodenum of WT on days 5 and 8 p.i., and in knockout mice on days 5, 8 and 13 p.i.; as well as in posterior portions of the small intestine in MHC I(-/-) and MHC II(-/-) on day 13 p.i., a finding which was not observed in WT mice. We concluded that immunohistochemistry analysis contributed to a more adequate understanding of the parasite localization in immunodeficient hosts and that the findings aid in the interpretation of immunopathogenesis in Strongyloides infection. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.
Resumo:
Myosin-Va is a Ca2+/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat.
Resumo:
Nuclear actin and nuclear myosins have been implicated in the regulation of geneexpression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phosphoser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.
Resumo:
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.
Resumo:
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.