101 resultados para spontaneous generation
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 +/- 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon`s horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeration in the hilus and pyramidal cell subfields CA3 and CM 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Peripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms. For a better understanding of these mechanisms, here we used a patch-clamp approach in brainstem slices to evaluate the characteristics of the synaptic transmission of NTS neurons sending projections to the ventral medulla, which include the premotor neurons involved in the generation of the sympathetic outflow. The NTS neurons sending projections to the ventral medulla were identified by previous microinjection of the membrane tracer dye, 1,1`-dioctadecyl-3,3,3`,3`-tetramethylindocarbocyanine perchlorate (DiI), in the ventral medulla and the spontaneous (sEPSCs) and tractus solitarius (TS)-evoked excitatory postsynaptic current (TS-eEPSCs) were recorded using patch clamp. With this approach, we made the following observations on NTS neurons projecting to the ventral medulla: (i) the sEPSCs and TS-eEPSCs of DiI-labelled NTS neurons were completely abolished by 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), an antagonist of ionotropic non-NMDA glutamatergic receptors, showing that they are mediated by L-glutamate; (ii) application of ATP increased the frequency of appearance of spontaneous glutamatergic currents, reflecting an increased exocytosis of glutamatergic vesicles; and (iii) ATP decreased the peak of TS-evoked glutamatergic currents. We conclude that L-glutamate is the main neurotransmitter of spontaneous and TS-evoked synaptic activities in the NTS neurons projecting to the ventral medulla and that ATP has a dual modulatory role on this excitatory transmission, facilitating the spontaneous glutamatergic transmission and inhibiting the TS-evoked glutamatergic transmission. These data also suggest that ATP is not acting as a cotransmitter with L-glutamate, at least at the level of this subpopulation of NTS neurons studied.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.
Resumo:
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the D-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against D-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against D-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
Resumo:
Background: High sodium salicylate doses can cause reversible hearing loss and tinnitus, possibly due to reduced outer hair cell electromotility. Sodium salicylate is known to alter outer hair cell structure and function. This study determined the reversibility and cochlear recovery time after administration of an ototoxic sodium salicylate dose to guinea pigs with normal cochlear function. Study design: Prospective experimental investigation. Methods: All animals received a single 500 mg sodium salicylate dose, but with different durations of action. Function was evaluated before drug administration and immediately before sacrifice. Cochleae were processed and viewed using scanning electron microscopy. Results: Changes in outer hair cell function were observed to be present 2 hours after drug administration, with recovery of normal anatomy beginning after 24 hours. Subsequently, derangement and distortion of cilia reduced, with effects predominantly in row three. At 168 hours, cilia were near-normal but with mild distortions which interfered with normal cochlear physiology. Conclusions: Ciliary changes persisted for up to 168 hours after ototoxic sodium salicylate administration.
Resumo:
To test a mathematical model for measuring blinking kinematics. Spontaneous and reflex blinks of 23 healthy subjects were recorded with two different temporal resolutions. A magnetic search coil was used to record 77 blinks sampled at 200 Hz and 2 kHz in 13 subjects. A video system with low temporal resolution (30 Hz) was employed to register 60 blinks of 10 other subjects. The experimental data points were fitted with a model that assumes that the upper eyelid movement can be divided into two parts: an impulsive accelerated motion followed by a damped harmonic oscillation. All spontaneous and reflex blinks, including those recorded with low resolution, were well fitted by the model with a median coefficient of determination of 0.990. No significant difference was observed when the parameters of the blinks were estimated with the under-damped or critically damped solutions of the harmonic oscillator. On the other hand, the over-damped solution was not applicable to fit any movement. There was good agreement between the model and numerical estimation of the amplitude but not of maximum velocity. Spontaneous and reflex blinks can be mathematically described as consisting of two different phases. The down-phase is mainly an accelerated movement followed by a short time that represents the initial part of the damped harmonic oscillation. The latter is entirely responsible for the up-phase of the movement. Depending on the instantaneous characteristics of each movement, the under-damped or critically damped oscillation is better suited to describe the second phase of the blink. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To describe spontaneous blink kinematics in Graves` upper eyelid retraction (UER). Methods: The magnetic search coil technique was used to record spontaneous blinks of 15 healthy subjects (aged 23-56 years, 15 eyelids) and 15 patients with Graves` UER (aged 22-62 years, 15 eyelids) during a 5-min period of video observation, and the signals were digitized at 200 Hz (12 bits). Overall, a total of 2,798 blinks were recorded for the controls and 1,860 for the patients. The distance between pupil center and upper eyelid margin in the primary position of gaze (MRD) was measured with the Image J software. Results: The blinking rate of patients was lower than that of control subjects, with a mean (+/-SEM) blinking rate (blinks/min) of 13.0 +/- 1.7 for patients and of 20.0 +/- 2.1 for the controls (t = 2.58, P = 0.016). There were no statistically significant differences in blink amplitude between controls (22.7 +/- 3.1 degrees) and Graves` patients (24.7 +/- 3.3 degrees). However, while only 22% of the blinks performed by controls were smaller than MRD, this rate was 78% for patients. In addition, in blinks larger than 25, patients showed lower down-phase velocity than controls. Conclusions: Patients with Graves` UER show reduced blinks rates and abnormal blink kinematics, which might be related to the development of exposure keratitis in this disease.
Resumo:
PURPOSE. To determine the shape of spontaneous interblink time interval distributions obtained in a long observation period in normal subjects and patients with Graves` orbitopathy. METHODS. The magnetic search coil technique was used to register the spontaneous blinking activity during 1 hour of video observation of two groups of 10 subjects each (normal controls aged 27-61 years, mean +/- SD = 46.0 +/- 13.6; patients with Graves` orbitopathy aged 33-61 years, mean +/- SD +/- 46.7 +/- 8.9). The spontaneous blink rate of each subject was calculated for the entire period of observation and for 56 five-minute bins. Histograms of the interblink time interval were plotted for each measurement of blink rate. RESULTS. Neither the overall mean blink rate (controls, 19.8 +/- 4.9; Graves`, 17.6 +/- 5.4) nor the interblink time (controls, 5.2 +/- 3.1, Graves`, 7.9 +/- 3.5) differed between the two groups. There was a large variation of both measurements when the 5-minute bins were considered. The interblink time distribution of all subjects was highly positively skewed when the 1-hour period was measured. A significant number of the 5-minute bin distributions deviated from the overall pattern and became symmetric. CONCLUSIONS. The normal blinking process is characterized by highly positively skewed interblink time distributions. This result means that most blinks have a short time interval, and occasionally a small number of blinks have long time intervals. The different patterns of distribution described in the early literature probably represent artifacts because of the small samples analyzed. (Invest Ophthalmol Vis Sci. 2011;52:3419-3424) DOI:10.1167/iovs.10-7060
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Spontaneous blinking is essential for maintaining a healthy ocular surface and clarity of vision. The spontaneous blink rate (SBR) is believed to reflect a complex interaction between peripheral influences mediated by the eye surface and the central dopaminergic activity. The SBR is thus extremely variable and dependent on a variety of psychological and medical conditions. Many different methods have been employed to measure the SBR and the upper eyelid kinematics during a blink movement. Each has its own merits and drawbacks, and the choice of a specific method should be tailored to the specific needs of the investigation. Although the sequence of muscle events that leads to a blink has been fully described, knowledge about the neural control of spontaneous blinking activity is not complete. The tear film is dynamically modified between blinks, and abnormalities of the blink rate have an obvious influence on the ocular surface.
Resumo:
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Resumo:
Fibrous dysplasia is a benign fibro-osseous disease that affects one or more bones. Although its etiology has been defined, the mechanism of spontaneous resolution is still unclear. There is strong evidence indicating the occurrence of stabilization when bone maturation is completed. Deformities that lead to esthetic and functional disorders are observed in almost all cases. Plastic surgery is often recommended when the maxilla and mandible are involved. In the case of mild deformities, careful follow-up during skeletal growth is recommended. We describe here the 23-year follow-up of a patient with monostotic fibrous dysplasia whose disease had stabilized by 13 years of follow-up. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 229-234)