95 resultados para soil mineral nitrogen
Resumo:
Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bod,l, depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bod,l, emission patterns and volumes and the mineral supply flux to the Amazon. Until now, the particular link between the Bod,l, and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bod,l, depression and the Amazon forest. This case study follows the dust events of 11-16 and 18-27 February 2008, from the emission in the Bod,l, over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s(-1), usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.
Resumo:
Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional x landscape scale); ( 2) how are these variations in N availability integrated across plant functional groups ( legume 9 non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (delta(15)N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar delta(15)N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in delta(15)N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.
Resumo:
Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.
Resumo:
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
Resumo:
In the present research, we studied wines from three different south Brazilian winemaking regions with the purpose of differentiating them by geographical origin of the grapes. Brazil`s wide territory and climate diversity allow grape cultivation and winemaking in many regions of different and unique characteristics. The wine grape cultivation for winemaking concentrates in the South Region, mainly in the Serra GaA(0)cha, the mountain area of the state of Rio Grande do Sul, which is responsible for 90% of the domestic wine production. However, in recent years, two new production regions have developed: the Campanha, the plains to the south and the Serra do Sudeste, the hills to the southeast of the state. Analysis of isotopic ratios of (18)O/(16)O of wine water, (13)C/(12)C of ethanol, and of minerals were used to characterize wines from different regions. The isotope analysis of delta(18)O of wine water and minerals Mg and Rb were the most efficient to differentiate the regions. By using isotope and mineral analysis, and discrimination analysis, it was possible to classify the wines from south Brazil.
Resumo:
This work aimed to study the possible alterations in production, accumulation of the vegetative phytomass and nitrogen efficiency use of the maize crop, in different doses of N applied in the fertilization, by using the technique of isotopic dilution of (15)N. The completely randomized block experimental design was adopted, with 5 treatments and 4 replicates. The following treatments were constituted in the doses in covering: 0, 50, 100, 150 and 200 kg ha(-1) of N, with fertilization of N-urea, respectively. Comparisons among the treatments had been run for crop productivity; nitrogen accumulation for the plant, and use of the nitrogen of the urea-(15)N for the crop. The increase of the dose of N-fertilizer resulted in increase of the dry matter mass, of the dry matter yield crop tax, of the productivity and accumulation of N in the maize plants.