196 resultados para secondary traumatic stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material`s strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, (sigma) over bar (w), as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sclerotinia sclerotiorum is a highly aggressive pathogen that causes great economic losses, especially in temperate climates. Several biological control agents are available, but actinobacteria have seldom been used to control this fungus. Our objective was to evaluate the efficiency and ultrastructural effects of the secondary metabolites produced by the ant-associated actinobacterium Propionicimonas sp. ENT-18 in controlling the sclerotia of S. sclerotiorum. We demonstrated total inhibition of sclerotia treated with 62.5 mu g/10 mu l of an ethyl acetate extract of compounds produced by ENT-18, and calculated an LC(50) of 1.69 mu g/sclerotia. Histological and ultrastructural analysis indicated that the cells of the treated sclerotia were severely damaged, suggesting direct action of the biomolecule(s) produced by the actinobacterium ENT-18 on the cell structure of the medullae and rind cell wall. This is the first report demonstrating a novel property of Propionicimonas sp.-antifungal activity against S. sclerotiorum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.