104 resultados para protein tnfaip 3
Resumo:
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of (14)C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [(3)H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [(3)H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [(3)H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Resumo:
Ninety-one consecutive systemic lupus erythematosus (SLE) patients (American College of Rheumatology criteria) with a history of cutaneous vasculitis were compared to 163 SLE controls without this clinical manifestation from July to December 2007 in order to determine the possible clinical and serological association of this manifestation. Data were obtained in an ongoing electronic database protocol and autoantibodies to anti-double-stranded DNA, anti-Sm, anti-RNP, anti-Ro/SS-A, anti-La/SS-B, and anticardiolipin and ribosomal P protein antibody (anti-P) were detected by standard techniques. Exclusion criteria were the presence of anti-phospholipid syndrome or antibodies, Sjogren syndrome, and a history of thrombosis. The mean age (38.5 +/- 11.5 vs. 37.8 +/- 11.6 years, p = 0.635), disease duration (12.5 +/- 7.8 vs. 11.8 +/- 7.9 years, p = 0.501), and frequency of white race (71.4% vs. 70.5%, p = 0.872) and female sex (96.8% vs. 93.7%, p = 0.272) were comparable in both groups. The vasculitis group had a higher frequency of malar rash (97.9% vs. 87.4%, p = 0.004), photosensitivity (91.4% vs. 81.6%, p = 0.030), and Raynaud phenomenon (RP; 27.7% vs. 7.5%, p < 0.001), whereas all other clinical manifestation including renal and central nervous system involvements were similar to the control group. Laboratorial data revealed that only anti-P (35.1% vs. 12.1%, p < 0.001) was more frequent in patients with vasculitis. In a multivariate logistic regression model, cutaneous vasculitis was associated to the presence of RP (OR = 3.70; 95% confidence interval [CI] = 1.73-8.00) and anti-P (OR = 3.42; 95% CI = 1.76-6.66). In summary, SLE cutaneous vasculitis characterizes a subgroup of patients with more RP and anti-P antibodies but not accompanied by a higher frequency of renal and central nervous system involvements.
Resumo:
Galectin-3 is a glycan-binding protein that mediates cell-cell and/or cell-extracellular matrix (ECM) interactions. Although galectin-3 is implicated in the progression of various types of cancers, the mechanisms by which galectin-3 enhances metastasis remain unclear. In order to elucidate the role of galectin-3 in the complex multistage process of cancer metastasis, we examined galectin-3 and galectin-3-binding site expression in a series of 82 spontaneous canine mammary tumors (CMT) and two CMT cell lines. Benign CMT tumors exhibited strong nuclear/cytoplasmic galectin-3 immunostaining, whereas malignant CMT tumors and metastases exhibited dramatically decreased galectin-3 expression with the majority of the immunostaining confined to the cytoplasm. Interestingly, intravascular tumor cells overexpressed galectin-3 regardless of their location. CMT-U27 xenografts displayed the same pattern of galectin-3 expression found in spontaneous malignant CMT. In parallel with the downregulation of galectin-3, malignant CMT displayed an overall loss of galectin-3-binding sites in the ECM and focal expression of galectin-3-binding sites mainly detected in intravascular tumor cells and endothelium. Furthermore, loss of galectin-3-binding sites was correlated with the downregulation of GLT25D1, a beta (1-O) galactosyltransferase that modifies collagen, and upregulation of stromal galectin-1. Finally, GLT25D1 mRNA expression was strikingly downregulated in malignant CMT-U27 compared with the benign cell line, and its expression was further de-creased in a galectin-3 knockdown CMT-U27 cell line. We therefore hypothesized that the loss of galectin-3-binding sites in the ECM in conjunction with the overexpression of galectin-3 in specific tumor cell subpopulations are crucial events for the development of mammary tumor metastases.
Resumo:
Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wildtype (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, PrnP(0/0)raS/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation. (C) 2009 UICC
Resumo:
Galectin-3 is a p-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3(-/-)) and their wild-type counterpart (gal3(+/+)) revealed that the LD50 for the gal3(-/-) mice was about seven times higher than that for the gal3(+/+) mice. When challenged with a sublethal dose, gal3(-/-) mice showed lower bacteria counts and higher production of IL-12 and IFN-gamma production, besides exhibiting a delayed although increased inflammatory reaction. Gal3(-/-) macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1 beta, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3(+/+) macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3(-/-) macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1 beta serum levels detected in infected gal3(-/-) mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1 beta production and thus affecting resistance to R. equi infection.
Resumo:
Low-grade inflammation adversely influences metabolism and cardiovascular prognosis, nevertheless increased intake of fruits and vegetables has rarely been studied in this context. Objective: In a prospective controlled study, the effect on C-reactive protein (CRP) levels was assessed. Methodology: Sixty consecutive women undergoing cosmetic abdominal surgery were instructed to consume six servings each of fruits and vegetables during the first postoperative month. Detailed 24h interviewer-administered dietary recall was conducted at baseline and at the end of the study, with weekly returns to monitor unscheduled dietary changes and compliance with the protocol. Variance (ANOVA) and covariance (ANCOVA) were evaluated to confirm significance and minimize confounding variables. Results: No differences concerning age (42.2 +/- 5.3 vs 41.1 +/- 6.0 years) or BMI (25.5 +/- 3.1 vs 25.0 +/- 3.0 kg/m(2)) occurred. Ingestion of fruits increased to approximately 5.2 vs 3.9 and of vegetables 5.9 vs 3.4 servings/ day, respectively. CRP decreased more conspicuously in the treated group (P = 0.028), and correlation between vitamin C input and CRP in supplemented participants was demonstrated (P = 0.014). Conclusions: Higher intake of antioxidant foods was feasible, and an antiinflammaotory effect occurred. Further studies with longer administration and follow-up period are recommended.
Resumo:
To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.
Resumo:
Context: The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. Objective: The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). Design: NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. Results: When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). Conclusion: We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.
Resumo:
Objective: To analyse and compare the expression of Palate, Lung, and Nasal Epithelium Clone (PLUNC) proteins in salivary glands from patients with and without AIDS (control group) using autopsy material. Methods: We analysed the expression of PLUNCs using immunohistochemistry in parotid (n = 45), submandibular (n = 47) and sublingual gland (n = 37) samples of AIDS patients [30 with normal histology, 21 with mycobacteriosis, 14 with cytomegalovirus (CMV) infection, 30 with chronic non-specific sialadenitis, and 30 HIV-negative controls. In situ hybridization (ISH) for SPLUNC 2 in the HIV-negative group was performed. Results: SPLUNC 1 expression was detected in the mucous acini of submandibular and sublingual glands, and SPLUNC 2 were seen in the serous cells. LPLUNC 1 expression was only positive in the salivary ducts. There was a higher expression of SPLUNC 2 in AIDS patients with CMV infection and mycobacteriosis when compared with all other groups. The intensity of staining for SPLUNC 2 was greater around the lesions than the peripheral ones. ISH for SPLUNC 2 showed perinuclear positivity in the serous cells in all HIV-negative cases. Conclusions: SPLUNC 1 and LPLUNC 1 proteins were similarly expressed in the salivary glands of AIDS patients and non-HIV patients. CMV infection and mycobacteriosis increase SPLUNC 2 expression in serous cells in the salivary gland of AIDS patients.
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Resumo:
An increasing number of studies have shown altered expression of secreted protein acidic and rich in cysteine (SPARC) and N-myc down-regulated gene (NDRG1) in several malignancies, including breast carcinoma; however, the role of these potential biomarkers in tumor development and progression is controversial. In this study, NDRG1 and SPARC protein expression was evaluated by immunohistochemistry on tissue microarrays containing breast tumor specimens from patients with 10 years of follow-up. NDRG1 and SPARC protein expression was determined in 596 patients along with other prognostic markers, such as ER, PR, and HER2. The status of NDRG1 and SPARC protein expression was correlated with prognostic variables and patient clinical outcome. Immunostaining revealed that 272 of the 596 cases (45.6%) were positive for NDRG1 and 431 (72.3%) were positive for SPARC. Statistically significant differences were found between the presence of SPARC and NDRG1 protein expression and standard clinicopathological variables. Kaplan-Meier analysis showed that NDRG1 positivity was directly associated with shorter disease-free survival (DFS, P < 0.001) and overall survival (OS, P < 0.001). In contrast, patients expressing low levels of SPARC protein had worse DFS (P = 0.001) and OS (P = 0.001) compared to those expressing high levels. Combined analysis of the two markers indicated that DFS (P < 0.001) and OS rates (P < 0.001) were lowest for patients with NDRG1-positive and SPARC-negative tumors. Furthermore, NDRG1 over-expression and SPARC down-regulation correlated with poor prognosis in patients with luminal A or triple-negative subtype breast cancer. On multivariate analysis using a Cox proportional hazards model, NDRG1 and SPARC protein expression were independent prognostic factors for both DFS and OS of breast cancer patients. These data indicate that NDRG1 over-expression and SPARC down-regulation could play important roles in breast cancer progression and serve as useful biomarkers to better define breast cancer prognosis.
Resumo:
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Lymphocyte and neutrophil death induced by exercise and the role of hydrolyzed whey protein enriched with glutamine dipeptide (Gln) supplementation was investigated. Nine triathletes performed two exhaustive exercise trials with a 1-week interval in a randomized, double blind, crossover protocol. Thirty minutes before treadmill exhaustive exercise at variable speeds in an inclination of 1% the subjects ingested 50 g of maltodextrin (placebo) or 50 g of maltodextrin plus 4 tablets of 700 mg of hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide dissolved in 250 mL water. Cell viability, DNA fragmentation, mitochondrial transmembrane potential and production of reactive oxygen species (ROS) were determined in lymphocytes and neutrophils. Exhaustive exercise decreased viable lymphocytes but had no effect on neutrophils. A 2.2-fold increase in the proportion of lymphocytes and neutrophils with depolarized mitochondria was observed after exhaustive exercise. Supplementation of maltodextrin plus Gln (MGln) prevented the loss of lymphocyte membrane integrity and the mitochondrial membrane depolarization induced by exercise. Exercise caused an increase in ROS production by neutrophils, whereas supplementation of MGln had no additional effect. MGln supplementation partially prevented lymphocyte apoptosis induced by exhaustive exercise possibly by a protective effect on mitochondrial function.
Resumo:
The PrP(C) is expressed in several cell types but its physiological function is unknown. Some studies associate the PrP(C) with copper metabolism and the antioxidant activity of SOD. Our hypothesis was that changes in PrP(C) expression lead to abnormal copper regulation and induce SOD downregulation in the vascular wall. Objectives: to study whether the PrP(C) expression undergoes induction by agents that trigger endoplasmic reticulum stress (ERS) and, in this context, to evaluate the SOD activity. Methods: To trigger ERS, in vitro, rabbit aortic smooth muscle cells were challenged for 4, 8 and 18 hours, with angiotensin-II, tunicamycin and 7-ketocholesterol. For in vivo studies rabbit aortic arteries were subjected to injury by balloon catheter. Results: In vitro baseline SOD activity, determined through inhibition of cytochrome-c reduction, was 13.9 +/- 1.2 U/mg protein, angiotensin-II exposed for 8 hours produced an increase in SOD activity, and cellular copper concentration was about 9 times greater only under these conditions. Western blotting analysis for SOD isoenzymes showed an expression profile that was not correlated with the enzymatic activity. PrP(C) expression decreased after exposure to all agents after different incubation periods. RT-PCR assay showed increased mRNA expression for PrP(C) only in cells stimulated for 8 hours with the different stressors. The PrP(C) mRNA expression in rabbit aortic artery fragments, subjected to balloon catheter injury, showed a pronounced increase immediately after overdistension. The results obtained indicated a PrP(C) protection factor during the early part of the ERS exposure period, but did not demonstrate a SOD-like profile for the PrP(C). (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)