65 resultados para protein sequence classification
Resumo:
A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64 kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22 kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-beta superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34-38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.
Resumo:
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid - pH 1.8 - in 70: 30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75: 25-25: 75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.
Resumo:
Xylella fastidiosa is a xylem-restricted plant pathogen that causes a range of diseases in several and important crops. Through comparative genomic sequence analysis many genes were identified and, among them, several potentially involved in plant-pathogen interaction. The experimental determination of the primary sequence of some markedly expressed proteins for X fastidiosa and the comparison with the nucleic acids sequence of genome identified one of them as being SCJ21.16 (XFa0032) gene product. The comparative analysis of this protein against SWISSPROT database, in special, resulted in similarity with a-hydroxynitrile lyase enzyme (HNL) from Arabidopsis thaliana, causing interest for being one of the most abundant proteins both in the whole cell extract as well as in the extracellular protein fraction. It is known that HNL enzyme are involved in a process termed ""cyanogenesis"", which catalyzes the dissociation of alpha-hydroxinitrile into carbonyle and HCN when plant tissue is damaged. Although the complete genome sequences of X.fastidiosa are available and the cyanogenesis process is well known, the biological role of this protein in this organism is not yet functionally characterized. In this study we presented the cloning, expression, characterization of recombinant HNL from X fastidiosa, and its probable function in the cellular metabolism. The successful cloning and heterologous expression in Escherichia coli resulted in a satisfactory amount of the recombinant HNL expressed in a soluble, and active form giving convenient access to pure enzyme for biochemical and structural studies. Finally, our results confirmed that the product of the gene XFa0032 can be positively assigned as FAD-independent HNLs. (C) 2009 Elsevier Ltd. All rights reserved.