215 resultados para product design
Resumo:
An experimental laboratory was designed and assembled at the Botanical Institute of So Paulo, Brazil, in order to research atmosphere-plant interactions through the use of a system of fumigation chambers. A system of three ""closed"" fumigation chambers was designed to be used inside or outside the laboratory. The system was built to be used with a single pollutant or a mix of them. The innovation in this system is to allow chemical reactions inside the chambers that simulate atmospheric chemistry, especially photochemical processes involving high levels of ozone. Assessment of the performance and applicability of the system was based on the response of Nicotiana tabacum Bel W3 exposed to ozone produced alternatively by a generator and inside the chamber by reactions of its precursors. The results showed that the system can be well applied to the study of atmospheric chemistry interactions and the effects on plants.
Resumo:
This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented, showing significative improvement in damping reserve with the control. The importance of sensor location is emphasized, on the basis of the energy necessary to operate the active system over the entire frequency range studied. The best results are obtained by a decentralized controller, observing displacement and velocity of the shaft at the bearing positions.
Resumo:
Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to verify the possibility to correlating specific gravity and wood hardness parallel and perpendicular to the grain. The purpose is to offer one more tool to help in the decision about wood species choice for use in floors and sleepers. To reach this intent, we considered the results of standard tests (NBR 7190:1997, Timber Structures Design, Annex B, Brazilian Association of Technical Standards) to determine hardness parallel and normal to the grain in fourteen tropical high density wood species (over 850 kg/m(3), at 12% moisture content). For each species twelve determinations were made, based on the material obtained at Sao Carlos and its regional wood market. Statistical analysis led to some expressions to describe the cited properties relationships, with a determination coefficient about 0.8.
Resumo:
The area above the nasal cavity plays a role in respiratory physiology. Aim: To analyze, during a period of growth, a possible change in the minimum cross sectional area (MCA) and nasal volume of the anterior nasal cavity. Materials and Methods: We evaluated 29 children (14 boys and 15 girls) with a mean age of 7.81 years at first examination (M1) and 11.27 years in the second examination (M2), without symptoms of nasal obstruction. The interval between examinations was 36-48 months. Children were subjected to the examination of acoustic rhinometry in which we recorded the minimum cross-sectional areas, volumes and their correlations with gender. Study design: Cohort. Results: The mean cross-sectional area of the nasal cavity of MCA for girls was 0.30 +/- 0.09 cm2 (M1) and 0.30 +/- 0.14 cm2 (M2), while for boys was 0.24 +/- 0.12 cm2 (M1) and 0.32 +/- 0.10 cm2 (M2). The mean values of the total volumes found for the whole sample were 2.17 +/- 0.23 cm3 (MCA1-M1), 2.56 +/- 0.27 cm3 (MCA1-M2), 4.24 +/- 1.17 cm3 (MCA2-M2) and 4.63 +/- 1.10 cm3 (MCA2-M2). Conclusion: There was no significant change in the minimum cross sectional area of the anterior nasal cavity. There was no significant difference between genders for both MCA and for the volume. There was a significant increase in MCA1.
Resumo:
To evaluate the main design models for socket base connections of precast concrete structures, an experimental investigation was carried out on specimens of this connection with smooth and rough interfaces in contact with cast-in-place concrete. The specimens consisted of pedestal walls and were submitted to loads with large eccentricities. Based on the experimental results, two rational design models are proposed for this connection. One of these models accounts for the friction and is applied to socket bases with smooth interfaces. The main behavior model was verified for sockets with this type of interface and the design of the longitudinal walls as corbels is also suggested in this case. Because the behavior of the rough interface specimens was very close to a monolithic connection, the other proposed model is an adaptation of the bending theory to calculate the vertical reinforcement of socket bases with rough interfaces.
Resumo:
The importance of a careful selection of rocks used in building facade cladding is highlighted. A simple and viable methodology for the structural detailing of dimension stones and the verification of the global performance is presented based on a Strap software simulation. The results obtained proved the applicability of the proposed structural dimensioning methodology which represents an excellent simple tool for dimensioning rock slabs used for building facade cladding. The Strap software satisfactorily simulated the structural conditions of the stone slabs under the studied conditions, allowing the determination of alternative slab dimensions and the verification of the cladding strength at the support.
Resumo:
This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.
Resumo:
Multilayer CVD coatings for high speed cutting applications were designed to achieve high wear and heat resistance during machining of steel alloys. In this work the microstructure and cutting performance of these novel multilayer CVD coatings are investigated and compared with standard CVD multilayer coatings. 3D-FIB tomography is used to characterize the microstructure of the layers, especially the transition between the Ti(C,N) and the Al(2)O(3) layer. The 3D reconstruction of the surface of the Ti(C,N) layer shows the formation of protruded Ti(C,N) grains with a very particular architecture, which penetrate into the Al(2)O(3) top-layer, providing a mechanical anchoring between both layers. Cemented carbides coated with the novel CVD multilayer present reduced crater and flank wear as well as improved adherence between the Al(2)O(3) top-layer and the Ti(C,N) layer leading to a dramatic improvement of cutting performance.
Resumo:
The present research studies the behavior of reinforced concrete locking beams supported by two capped piles with the socket embedded; used as connections for pre-cast concrete structures. The effect provoked by locking the beam on the pile-caps when supported by the lateral socket walls was evaluated. Three-dimensional numerical analyses using software based on the finite element method (FEM) were developed considering the nonlinear physical behavior of the material. To evaluate the adopted software, a comparative analysis was made using the numerical and experimented results obtained from other software. In the pile caps studied, a variation in the wall thickness, socket interface, strut angle inclination and action on beam. The results show that the presence of a beam does not significantly change pile cap behavior and that the socket wall is able to effectively transfer the force from the beam to the pile caps. By the tensions on the bars of longitudinal reinforcement, it was possible to obtain the force on the tie and the strut angle inclination before the collapse of models. It was found that the angles present more inclinations than those used in the design, which was made based on a strut-and-tie model. More results are available at http://www.set.eesc.usp.br/pdf/download/2009ME_RodrigoBarros.pdf
Resumo:
The residues generation is a quite serious problem in several industrial areas and also in the lumbering area. The search for the elimination or reduction of the volume of generated residues is endless, however limited, resulting in the search for a proper destination or better use, instead of simply burning it. A lot of uses and services are commonly proposed, but with low aggregated value to the residue. This work shows the usage viability of different discarded residues and wood composites in the production of an electric guitar. Cupiuba, ipe and jatoba residues have been used besides wood composites of pinus. The residues and wood composites have shown appropriate resistance, surfacing quality and design terms, and could be used to substitute the traditionally wood used in the production of the instrument as well as in other products of similar characteristics and with larger aggregated value.
Resumo:
The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.
Resumo:
This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.
Resumo:
This paper reports a research that evaluated the product development methodologies used in Brazilian small and medium-sized metal-mechanic enterprises (SMEs), in a specific region of Sao Paulo. The tool used for collecting the data was a questionnaire, which was developed and applied through interviews conducted by the researchers in 32 companies. The main focus of this paper can be condensed in the synthesis-question ""Is only the company responsible for the development?"" which was analyzed thoroughly. The results obtained from this analysis were evaluated directly (through the respective percentages of answers) and statistically (through the search of an index which demonstrates if two questions are related). The results point to a degree of maturity in SMEs, which allows product development to be conducted in cooperation networks. (C) 2007 Elsevier Ltd. All rights reserved.