103 resultados para predator prey dynamics
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
In Rondonia State, Brazil, settlement processes have cleared 68,000 km 2 of tropical forests since the 1970s. The intensity of deforestation has differed by region depending on driving factors like roads and economic activities. Different histories of land-use activities and rates of change have resulted in mosaics of forest patches embedded in an agricultural matrix. Yet, most assessments of deforestation and its effects on vegetation, soil and water typically focus on landscape patterns of current conditions, yet historical deforestation dynamics can influence current conditions strongly. Here, we develop and describe the use of four land-use dynamic indicators to capture historical land-use changes of catchments and to measure the rate of deforestation (annual deforestation rate), forest regeneration level (secondary forest mean proportion), time since disturbance (mean time since deforestation) and deforestation profile (deforestation profile curvature). We used the proposed indices to analyze a watershed located in central Rondonia. Landsat TM and ETM+ images were used to produce historical land-use maps of the last 18 years, each even year from 1984 to 2002 for 20 catchments. We found that the land-use dynamics indicators are able to distinguish catchments with different land-use change profiles. Four categories of historical land-use were identified: old and dominant pasture cover on small properties, recent deforestation and dominance of secondary growth, old extensive pastures and large forest remnants and, recent deforestation, pasture and large forest remnants. Knowing historical deforestation processes is important to develop appropriate conservation strategies and define priorities and actions for conserving forests currently under deforestation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aceria guerreronis Keifer (Acari: Eriophyidae) is a major pest of coconut fruits (Cocos nucifera L.) in many countries of the Americas, Africa, and parts of Asia. Considerable attention has been given to studies of biological control agents of A. guerreronis. Proctolaelaps bulbosus Moraes, Reis and Gondim Jr. is a predator recently discovered in association with A. guerreronis. Nothing is known about its biology. The aim of this study was to determine suitable food sources for P. bulbosus, among items commonly found on coconut fruits, including A. guerreronis. Food sources evaluated included the mites A. guerreronis, Steneotarsonemus concavuscutum Lofego and Gondim Jr., and Tyrophagus putrescentiae (Schrank), the fungus Rhizopus aff. stolonifer (Ehrenb.) Vuill and coconut pollen; the mite Tetranychus urticae Koch was also included in the assessments, for being a commonly used prey for mass production and laboratory rearing of predatory mites. Proctolaelaps bulbosus was able to develop up to adulthood when fed A. guerreronis, R. aff. stolonifer and T. putrescentiae. It had the highest population growth rates when feeding on the former (R (o) = 17.5; r (m) = 0.392). These results indicate that A. guerreronis is the most suitable food for P. bulbosus among the possible food sources found on coconut fruits and that P. bulbosus can survive in the absence of eriophyid using R. aff. stolonifer as a food source.
Resumo:
The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm(2) of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Biology of predator mite Euseius alatus DeLeon (Acari: Phytoseiidae) under different temperatures. Euseius alatus DeLeon (Acari: Phytoseiidae) is one of the most common predators of tropical fruit trees in Brazil, feeding of pollen, mites and other small arthropods. This predator presents wide distribution, occurring from Rio Grande do Sul to Ceara. This work had as objective to evaluate the effect of temperature oil the development and reproduction of E. alatus, in addition to determining their thermal requirements. The study was accomplished at temperatures of 18, 21, 24, 27, 30 and 33 degrees C; relative humidity of 70 +/- 5%; and 12-h photophase. At these temperatures, the egg-adult period lasted 14.0; 8.1; 5.5; 4.9; 3.8 and 3.1 days, respectively. The egg, larva, protonymph and deutonymph stages and the egg-adult period presented thermal thresholds of 12.52; 13.85; 14.86; 14.86 and 13.31 degrees C,and thermal constants of 22.32; 14.23; 16.23; 17.3 and 70.16 degrees days. The values for the parameters of the fertility life table, analyzed ill conjunction With the values of the different variables of development at different temperatures, showed that the temperature of 30 degrees C is the Most suitable for development and reproduction of E. alatus in the laboratory. Therefore, is it apparent that the best temperature conditions for the development of L alatus are found in the warmer regions of Brazil, such as those observed in northeastern Brazil.
Resumo:
Predatory behaviour and reproductive output of the ladybird beetle Stethorus tridens Gordon as function of the tomato red spider mite (TRSM), Tetranychus evansi Baker & Pritchard, densities was investigated in the laboratory. Adult female of S. tridens were isolated in cylindrical plastic arenas, containing a leaf disc of Solanum americanum Mill. with 5, 20, 40, 60, 80 or 100 T. evansi nymphs. The number of prey consumed and eggs laid were evaluated daily for ten consecutive days, starting at the oviposition. Oviposition of S. tridens was positively correlated with prey consumption and lower threshold prey consumption for S. tridens laying eggs was 16.3 mites per day. The instantaneous rate of attack (ca. discovery area) and the handling time were 0.0062 h(-1) and 0.83 h, and 0.00254 h(-1) and 0.78 h, respectively, for predators at the 1st- and 10th-oviposition day. The predator exhibited a type II functional response at 1st- and 10th-oviposition day with a maximum consumption per predator of 33 T. evansi nymphs per day at the highest prey density. The ladybird beetle S. tridens is often collected associated with red spider mite colonies on solanaceous wild plants and the results suggest the potential of this ladybird beetle to control T. evansi in tomatoes crops.
Resumo:
Tetranychus evansi is an important pest of tomato in several countries. The predatory mite Phytoseiulus longipes has been found in association with it in Uruguaiana, State of Rio Grande do Sul, Brazil. The objective of this study was to evaluate the distribution of those two species in Uruguaiana region. Bi-weekly samples of plant parts were taken between January 28 and April 30, 2007 in Uruguaiana and five neighboring counties. Tetranychus evansi was found in all counties, but P. longipes was only found in Uruguaiana, mainly in the urban area. It is conceivable that such restricted distribution of P. longipes is due to its recent introduction to the region. Alternatively, unfavorable winter conditions could prevent its persistence, except in protected places. Buildings and vegetation characteristics of the urban area of Uruguaiana could moderate strong winds, intense rainfall and low temperatures that commonly occur in the area.
Resumo:
Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch (Acari: Tetranychidae) are important pests of Solanaceae in many countries. Several studies have demonstrated that T. urticae is an acceptable prey to many predatory mites, although the suitability of this prey depends on the host plant. T. evansi, has been shown to be an unfavorable prey to most predatory mites that have been tested against it. The predator Phytoseiulus fragariae Denmark and Schicha (Acari: Phytoseiidae) has been found in association with the two species in Brazil. The objective of this work was to compare biological parameters of P. fragariae on T. evansi and on T. urticae as prey. The study was conducted under laboratory conditions at 10, 15, 20, 25 and 30 degrees C. At all temperatures, survivorship was lower on T. evansi than on T. urticae. No predator reached adulthood at 10 degrees C on the former species; even on the latter species, only about 36% of the predators reached adulthood at 10 degrees C. For both prey, in general, duration of each life stage was shorter, total fecundity was lower and intrinsic rate of population increase (r(m) ) was higher with increasing temperatures. The slower rate of development of P. fragariae on T. evansi resulted in a slightly higher thermal requirement (103.9 degree-days) on that prey than on T. urticae (97.1 degree-days). The values of net reproduction rate (R-0), intrinsic rate of increase (r (m) ) and finite rate of increase (lambda) were significantly higher on T. urticae, indicating faster population increase of the predator on this prey species. The highest value of r (m) of the predator was 0.154 and 0.337 female per female per day on T. evansi and on T. urticae, respectively. The results suggested that P. fragariae cannot be considered a good predator of T. evansi.
Resumo:
Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.
Resumo:
introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.
Resumo:
Plant communities on pastures adapt to varying frequencies and severities of defoliation through mechanisms capable of ensuring their longevity and photosynthetic efficiency. The objective of this experiment was to evaluate tiller population density, demographic patterns of tillering and population stability of palisadegrass swards subjected to four grazing intensities. Treatments corresponded to four sward steady state conditions (sward heights of 10, 20, 30 and 40 cm) generated by continuous stocking. Measurements of tiller population density and population dynamics were performed at 4 week intervals and the results were used to calculate tiller appearance, death and survival rates. Tiller appearance and death rate were used to calculate sward stability index. The results indicate that keeping swards low (10 cm or lower) may be prejudicial to persistency and productivity of palisadegrass. The results also indicate that a low tiller population alone should not be considered as an indicator of loss of productive potential and of reduced plant persistency, since swards may be stable even with low population of tillers.
Resumo:
There is a great need of research to assess the behavior of micronutrients in natural forests of southern Brazil. Do to this need, the objective of this work was to study the levels and amounts of micronutrients in forest above ground biomass of the forest, in a comparative way, in two secondary succession stages (SSS) in a Seasonal Deciduous Forest in Rio Grande do Sul, Brazil. The SSS had enjoyed 35 and 55 years of regeneration since the end of agricultural use, respectively for initial secondary forest (ISF) and late secondary forest (LSF). The above-ground biomass was collected and separated into vegetative strata and these in fractions, thereafter chemically analyzed for the levels of B, Fe, Zn, Mn and Cu. Leaf fractions of arboreal, shrubs and herbaceous strata showed the highest levels for most nutrients. Only the levels of iron and manganese were higher in the bark fraction, for both sucession stages. In the LSF, the herbaceous stratum also showed high levels of Fe. The average levels of micronutrients showed differences between the two sucession stages only in relation to Fe and Mn, with higher levels in LSF biomass. The amount of nutrients stored was always higher in LSF, because of the largest biomass and the higher levels of Fe and Mn in the biomass of this SSS. The quantitative order of nutrient storage in biomass was Fe> Mn> Zn> B> Cu.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.