83 resultados para population genetic structure
Resumo:
Siderastrea stellata and S. radians are scleractinian coral species that present a remarkable overlap of diagnostic characteristics and sympatric distribution. Moreover, both are viviparous with similar reproductive strategies and with a gregarious larval behavior. Samples of both species from the Brazilian coast were analyzed using 18 isozymic loci to quantify their genetic variability and populational structure. Results confirmed species identity, high intrapopulational variability and revealed moderate genetic structuring among all samples (S. stellata: F(ST) = 0.070; S. radians: F(ST) = 0.092). Based on genotypic diversity analysis, there was evidence that local recruitment may have a minor role in the populations (mean, G(o) :G(e) = 1.00 +/- 0.0003 SD for S. stellata and 0.99 +/- 0.0023 SD for S. radians). Deviations towards heterozygote deficiencies found in both Siderastrea species could be explained by the Wahlund effect, since there was evidence that populations might be composed of colonies of different ages. In S. radians it is also likely that there is some inbreeding occurring in the studied populations. Despite the brooding pattern and the gregarious larval behavior, our data suggest the occurrence of gene flow along the Brazilian coast. This is the first study on population genetics of Brazilian reef corals.
Resumo:
Population structure of the lancelet Branchiostoma caribaeum Sandevall, 1853 was studied in four surveys, corresponding to austral seasons, in a tropical bay, southeast of Brazil. Abundance was higher in the spring and was positively correlated to coarse sediments, limiting its occurrence to some sectors of the sampling area. Body length and biomass differed seasonally but not between sexes. Sexually mature individuals occurred in all seasons, suggesting continuous breeding that is typical of tropical species. Variation in the frequency of small specimens indicates temporal differences in the intensity of breeding. The body length of recruits differed from other population of lancelets and the small length which B. caribaeum attained sexual maturity in Guanabara Bay may be related to local environmental stress or the great availability of food.
Resumo:
Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil
Resumo:
Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications.
Resumo:
The freshwater prawn Macrobrachium amazonicum is widely distributed in South America, and occupies habitats with a wide range of salinities. Several investigations have revealed the existence of wide intraspecific variability among different populations, although the understanding of this variability is still fragmentary and incomplete. We compared and characterized inland and coastal populations of M. amazonicum from Brazil, using molecular data (16S and COI mtDNA) to describe the degree of variability, structure, and relationships among them. Genetic divergence rates among populations showed variability at the intraspecific level. All the analyses evidenced significant genetic divergence among populations, structuring them in three groups: I-inland waters of the Amazonian Hydrographic Region (HR); II-Parana/Paraguay HR; and III-coastal systems of northern and northeastern Brazil. Phylogenetic reconstructions revealed that the populations form a single monophyletic clade, which supports their characterization as a single species. Clade I was a sister clade of that formed by clades II and III, which were themselves sister clades. Populations from Sertaozinho/Miguelopolis and Avare, introduced into the state of Sao Paulo, may have originated from natural populations in the states of Mato Grosso do Sul and Para, respectively. Geographical isolation probably contributed to the observed variation, and if this isolation continues. M. amazonicum may undergo speciation within its broad geographical distribution. The sequences obtained here can be used as name-tags for population identification, and the DNA barcodes are useful to identify the origin of specimens used in different freshwater-prawn cultures or introduced populations of unknown origin.
Resumo:
Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.
Resumo:
Genetic variation provides a basis upon which populations can be genetically improved. Management of animal genetic resources in order to minimize loss of genetic diversity both within and across breeds has recently received attention at different levels, e. g., breed, national and international levels. A major need for sustainable improvement and conservation programs is accurate estimates of population parameters, such as rate of inbreeding and effective population size. A software system (POPREP) is presented that automatically generates a typeset report. Key parameters for population management, such as age structure, generation interval, variance in family size, rate of inbreeding, and effective population size form the core part of this report. The report includes a default text that describes definition, computation and meaning of the various parameters. The report is summarized in two pdf files, named Population Structure and Pedigree Analysis Reports. In addition, results (e. g., individual inbreeding coefficients, rate of inbreeding and effective population size) are stored in comma-separate-values files that are available for further processing. Pedigree data from eight livestock breeds from different species and countries were used to describe the potential of POPREP and to highlight areas for further research.
Resumo:
We describe growth, longevity, sex ratio, reproductive period, and recruitment of Aegla paulensis from Jaragua Stale Park, Sao Paulo, Brazil (23 degrees 27'27.9 '' S; 46 degrees 45'32.3 '' W). The population was sampled monthly (September 2007 through August 2009) with the aid of traps. Over five thousand individuals were captured, sexed, measured (carapace length = CL) and inspected for reproductive traits (females only), and then released back to the sampling site. The pattern of the reproductive cycle was strongly seasonal (austral mid autumn through late winter), with a single recruitment pulse per year. The obtained von Bertalanffy growth equations were CL = 21.25[1-e(-0.041(t + 1.250))] and CL = 16.52[1-e(-0.049(t + 1.823))] for males and females, respectively. Males (mean CL +/- SD = 11.86 +/- 2.79 mm) attain larger sizes than females (mean CL +/- SD = 10.84 +/- 2.36 mm). Aegla paulensis reproduces twice during an estimated life span of 40.2 months for females and 33.9 months for males. Temporal variation of sex ratio showed a distinctive pattern characterized by a sequence of three distinct periods that repeated from one year to another, and which suggested that a behavioral component influence the proportion of sex in adult specimens sampled with traps during reproductive and non-reproductive periods.
Resumo:
Background: The common vampire bat Desmodus rotundus is an excellent model organism for studying ecological vicariance in the Neotropics due to its broad geographic range and its preference for forested areas as roosting sites. With the objective of testing for Pleistocene ecological vicariance, we sequenced a mitocondrial DNA (mtDNA) marker and two nuclear markers (RAG2 and DRB) to try to understand how Pleistocene glaciations affected the distribution of intraspecific lineages in this bat. Results: Five reciprocally monophyletic clades were evident in the mitochondrial gene tree, and in most cases with high bootstrap support: Central America (CA), Amazon and Cerrado (AMC), Pantanal (PAN), Northern Atlantic Forest (NAF) and Southern Atlantic Forest (SAF). The Atlantic forest clades formed a monophyletic clade with high bootstrap support, creating an east/west division for this species in South America. On the one hand, all coalescent and non-coalescent estimates point to a Pleistocene time of divergence between the clades. On the other hand, the nuclear markers showed extensive sharing of haplotypes between distant localities, a result compatible with male-biased gene flow. In order to test if the disparity between the mitochondrial and nuclear markers was due to the difference in mutation rate and effective size, we performed a coalescent simulation to examine the feasibility that, given the time of separation between the observed lineages, even with a gene flow rate close to zero, there would not be reciprocal monophyly for a neutral nuclear marker. We used the observed values of theta and an estimated mutation rate for the nuclear marker gene to perform 1000 iterations of the simulation. The results of this simulation were inconclusive: the number of iterations with and without reciprocal monophyly of one or more clades are similar. Conclusions: We therefore conclude that the pattern exhibited by the common vampire bat, with marked geographical structure for a mitochondrial marker and no phylogeographic structure for nuclear markers is compatible with a historical scenario of complete isolation of refuge-like populations during the Pleistocene. The results on demographic history on this species is compatible with the Carnaval-Moritz model of Pleistocene vicariance, with demographic expansions in the southern Atlantic forest.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10 years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10 years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We studied the structure of a population of Hydromedusa maximiliani associated with a stream in Parque Estadual da Serra do Mar, Nucleo Itutinga-Piloes, southeastern Brazil, between October 2004 and October 2005. Twenty-five individuals were captured, and a population size of 43.72 +/- 23.7 individuals was estimated. This value is similar to that of the population of Parque Estadual Carlos Botelho, another Atlantic forest reserve of southeastern Brazil. Males were recaptured more frequently than females, suggesting higher activity and/or greater movement of males.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.