121 resultados para medial frontal cortex
Resumo:
The superior colliculus (SC) is a mesencephalic area involved in the mediation of defensive movements associated with cardiovascular changes. Noradrenaline (NA) is a neurotransmitter with an important role in central cardiovascular regulation exerted by several structures of the central nervous system. Although noradrenergic nerve terminals have been observed in the SC, there are no reports on the effects of local NA injection into this area. Taking this into consideration, we studied the cardiovascular effects of NA microinjection into the SC of unanesthetized rats. Microinjection of NA into the SC evoked a dose-dependent blood pressure increase and a heart rate decrease in unanesthetized rats. The pressor response to NA was not modified by intravenous pretreatment with the vasopressin v(1)-receptor antagonist dTyr(CH(2))(5) (Me)AVP, indicating a lack of vasopressin involvement in the response mediation. The effect of NA microinjection into the SC was blocked by intravenous pretreatment with the ganglionic blocker pentolinium, indicating its mediation by the sympathetic nervous system. Although the pressor response to NA was not affected by adrenal demedullation, the accompanying bradycardia was potentiated, suggesting some involvement of the sympathoadrenal system in the cardiovascular response to NA microinjection into the SC. In summary, results indicate that stimulation of noradrenergic receptors in the SC causes cardiovascular responses which are mediated by activation of both neural and adrenal sympathetic nervous system components. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
PURPOSE: To analyze the effects of detachment and repositioning of the medial pterygoid muscle on the growth of the maxilla and mandible of young rats through cephalometry. METHODS: Thirty one-month-old Wistar rats were used, distributed into three groups: experimental, sham-operated and control. In the experimental group, unilateral detachment and repositioning of the medial pterygoid muscle was performed. The sham-operated group only underwent surgical access, and the control group did not undergo any procedure. The animals were sacrificed at the age of three months. Their soft tissues were removed and the mandible was disarticulated. Radiographs of the skull in axial projection and the hemimandibles in lateral projection were obtained, and cephalometry was performed. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There were significant differences in the length of the mandible relative to the angular process in the experimental group and in the height of the mandibular body in the sham-operated group. CONCLUSION: The experimental detachment and repositioning of the medial pterygoid muscle during the growth period in rats affected the growth of the angle region, resulting in asymmetry of the mandible.
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D, receptors and in other part by inhibition of stimulatory action of DA through D2 receptors.
Resumo:
Introduction: Cerebral ischemia is an important cause of brain lesion in humans. The target in research has been the ischemic core or the penumbra zones; little attention has been given to areas outside the core or the penumbra but connected with the primary site of injury. Objective: Evaluate the laminar response of a subpopulation of gabaergic cells, those that are parvalbumin (PV) positive and the astrocytes through the expression of the glial transporter GLT1 on the contralateral cortex to an ischemic core. Methodology: For this purpose we used the medial cerebral artery occlusion model in rats. The artery was occluded for 90 minutes and the animals were sacrificed at 24 and 72 hours post-ischemia. The brains were removed, cut in a vibratome at 50 microns and incubated with the primary antibodies against PV or GLT1. Sections were developed using the vectastain Kit. In control tissue the primary antibody was omitted. Results: When compared with control animals, treated ones show a decrease in the expression of GLT1, especially in layers III and IV of the contralateral cortex to the ischemic core. PV positive cells increases in layers II and V. Conclusion: Increases in the expression of PV cells could correspond to an adaptation associated with glutamate increases in the synaptic compartment. These increases may be due to decreases in the expression of GLT1 transporter, that could not remove the glutamate present in the synaptic cleft, generating hyperactivity in the contralateral cortex. These changes could represent an example of neuronal and glial plasticity in remote areas to an ischemic core but connected to the primary site of injury.
Resumo:
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Resumo:
A role for the occipital or retrosplenial cortex in nociceptive processing has not been demonstrated yet, but connections from these cortices to brain structures involved in descending pain-inhibitory mechanisms were already demonstrated. This study demonstrated that the electrical stimulation of the occipital or retrosplenial cortex produces antinociception in the rat tail-flick and formalin tests. Bilateral lesions of the dorsolateral funiculus abolished the effect of cortical stimulation in the tail-flick test. Injection of glutamate into the same targets was also antinociceptive in the tail-flick test. No rats stimulated in the occipital or retrosplenial cortex showed any change in motor performance on the Rota-rod test, or had epileptiform changes in the EEG recording during or up to 3 hours after stimulation. The antinociception induced by occipital cortex stimulation persisted after neural block of the retrosplenial cortex. The effect of retrosplenial cortex stimulation also persisted after neural block of the occipital cortex. We conclude that stimulation of the occipital or retrosplenial cortex in rats leads to antinociception activating distinct descending pain-inhibitory mechanisms, and this is unlikely to result from a reduced motor performance or a postictal phenomenon. Perspective: This study presents evidence that stimulation of the retrosplenial or occipital cortex produces antinociception in rat models of acute pain. These findings enhance our understanding of the role of the cerebral cortex in control of pain. (C) 2010 by the American Pain Society
Resumo:
The effect of intraseptal injections of lidocaine before a first or a second session in the elevated plus-maze, in a test-retest paradigm, was investigated. In addition to gross session analyses, a minute-by-minute analysis of the sessions was used to evaluate both anxiety and memory. Lidocaine injections before the test session produced increases in the frequency of entries, time spent and distance run in the open arms without affecting activity occurring in the closed arms. During the retest session, saline- and lidocaine-treated rats exhibited increased indices of anxiety and lidocaine-treated rats exhibited decreased closed-arm entries. The minute-by-minute analysis showed a faster decrease in anxiety-related behaviors during the test session by saline- than by lidocaine-treated rats and a significant decrease in closed-arm exploration by saline-treated rats, but not by lidocaine-treated ones. Lidocaine injection before the retest session produced increases in the frequency of entries, time spent and distance run in the open arms in the second session when compared with saline-treated rats. Minute-by-minute analysis showed an increase in the time spent in the open arms by lidocaine animals at the beginning of the retest session in comparison to saline animals and a significant decrease in closed-arm exploration by both groups. These results suggest that inactivation of the medial septum by lidocaine affects the expression of unconditioned and conditioned forms of anxiety in the elevated plus-maze and, in a lesser way, the acquisition and retention of spatial information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object by qEEG gamma-band (30-100 Hz). It is involved in cognitive processes, memory, spatial/temporal and proprioceptive factors. Our hypothesis is that an increase in gamma coherence in frontal areas will be observed during moment preceding ball drop, due to their involvement in attention, planning, selection of movements, preparation and voluntary control of action and in central areas during moment after ball drop, due to their involvement in motor preparation, perception and execution of movement. However, through a paired t-test, we found an increase in gamma coherence for F3-F4 electrode pair during moment preceding ball drop and confirmed our hypothesis for C3-C4 electrode pair. We conclude that gamma plays an important role in reflecting binding of several brain areas in a complex motor task as observed in our results. Moreover, for selection of movements, preparation and voluntary control of action, motor preparation, perception and execution of movement, the integration of somatosensory and visual information is mandatory. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Telecanthus, the lateral displacement of the medial canthus, can be a congenital deformity or can occur after facial trauma or tumor resection. Treatment of telecanthus remains a challenge for plastic surgeons. For proper correction, it is necessary to shift the medial canthus medially, fixing its tendon to the bone. The ideal technique would allow easy, safe, and stable fixation of the tendon, permit a unilateral approach with minimal incisions, and be cost-effective. The purpose of this study was to evaluate the feasibility and results (immediate and long-term) of medial telecanthus repair using ipsilateral titanium microanchor fixation. Nine patients, 7 with unilateral telecanthus and 2 with bilateral telecanthus, underwent ipsilateral canthopexy involving a microanchor device. Anthropometric measurements of the orbital regions were taken before, immediately after, and at 1 year after surgery. Data for the affected sides were compared with those for the unaffected sides, and the evolution of those values was assessed throughout the 1-year follow-up period. For all patients, the final values were lower than those initially obtained. At 1 year after surgery, the intercanthal distance was reduced to age-adjusted normal values in all cases. On the operated side, stable improvement was observed in terms of the distance from the medial canthus to the midline, although some degree of recurrence was noted in most of the patients. The use of a microanchor system for medial canthopexy can be considered an easily performed and effective option for treating canthal dystopia, especially when an ipsilateral approach is preferred.
Resumo:
Background There are multitudes of procedures in plastic surgery used to correct hypertrophic and pendulous breasts in patients with heavy and ptotic breasts who need great resections of breast tissue, where the suprasternal notch-to-nipple distance is long and the use of nipple-areola transposition techniques is a challenge for the plastic surgeon. The purpose of this study is to present a technique of reduction mammaplasty that could solve these problems based on the following principles: mammary reduction utilizing a thin superior medial pedicle (0.8-1.5 cm thick) and the resection performed in two steps: (1) the base excess at a plane perpendicular to the breast (this determines the cone`s height) and (2) central half keel (this determines the breast diameter reduction). Methods Ninety patients with mammary hypertrophy were operated on at the ""Hospital das Clinicas,"" Sao Paulo University Medical School, between January 2000 and November 2005. Inclusion in this study required a minimum of 12-cm change in nipple position and a 750-g breast resection. Results The mean change in nipple position was 16 cm (range = 12-21 cm). The mean weight of each breast was 1400 (range = 750-3000 g).Considering the great amount of volume removed and the size of the operated breasts, few complications were observed and were similar to those reported following other techniques described in the literature. Patient satisfaction following this procedure was high. Conclusion The results of this study clearly demonstrate that thin superior medial pedicle reduction mammaplasty is a safe and reliable technique in cases of severe mammary hypertrophy.