63 resultados para dissolution efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processes involved in the Se electrodeposition, mainly the one related to the formation of H2Se species on Au electrode in perchloric acid solutions, have been investigated through cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), rotating ring-disc electrode (RRDE), and atomic force microscopy (AFM) techniques. In the experiments performed with the EQCM, with the potential sweep in the negative direction, the responses for the mass variation were divided in three well-defined potential regions: A (from 1.55 to 0.35 V), B (from 0.35 to -0.37 V), and C (from -0.37 to -0.49 V). It was verified that the following processes can occur, respectively: the species (AuO)(2)H2SeO3 was desorbed during the AuO reduction, the reduction of Se(IV) to Se(0), and the formation of H2Se. When the potential was swept in the positive direction, the responses for the mass variation were divided in four well-defined potential regions: D (from -0.49 to 0.66 V), E (from 0.66 to 0.99 V), F (from 0.99 to 1.26 V), and G (from 1.26 to 1.55 V), and the described processes in these regions were, respectively: the Se deposition and adsorption of water molecules and/or perchlorate ions, the Se dissolution, the Se incorporating mass in the form of HO-Se, and the Au oxidation (all potentials are referred to the Ag/AgCl electrode). Making use of the RRDE, using the collection technique, the formation of H2Se species during the Se electrodeposition was investigated. Therefore, it was confirmed that this species is formed on the disc electrode between -0.3 and -0.55 V vs the Ag/AgCl potential range (collecting the oxidized compound onto the ring electrode). AFM images also indicated that the surface topography of the Se-massive deposit on Au is different from the images registered after the formation of H2Se species, confirming the cathodic stripping of Se.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The borohydride oxidation reaction (BOR) was studied on Pt and Au electrodes by cyclic voltammetry in dilute alkaline borohydride solutions (0.1 M NaOH + 10(-3) mol L(-1) NaBH(4)). More specifically, the electrodes were considered as either Vulcan XC72-supported Pt or Au (noted as Pt/C and Au/C, respectively) active layers or smooth Pt or Au surfaces, the latter possibly being covered by a layer of (non-metalized) Vulcan XC72 carbon powder. The BOR onset potential and the number of electrons (n(e-)) exchanged per BH(4)(-) anion (faradaic efficiency) were investigated for these electrodes, to determine whether the residence time of reaction intermediates (at the electrode surface or inside the porous layer) does influence the overall reaction pathway/completion. For the carbon-supported platinum, n(e-) strongly depends on the thickness of the active layer. While thin (ca. 0.5 mu m-thick) Pt/C active layers yield n(e-) < 4, thick layers (approximately 3 mu m) yield n(e-)approximate to 8, which can be ascribed to the sufficient residence time of the molecules formed within the active layer (H(2), by heterogeneous hydrolysis, or BOR intermediates) enabling further (near-complete) oxidation. This puts into evidence that not only the nature of the electrocatalyst is important to reach high BOR efficiency, but also the structure/thickness of the active layer. The same trend applies for Au/C active layers and for smooth Pt or Au surfaces covered with a layer of (inactive) Vulcan XC72. In addition, the BOR onset usually shifts negative when the reaction intermediates are trapped, which suggests that some of the intermediates are more easily oxidized than BH(4)(-) itself; based on literature data, BH(3)OH(-) species is a likely candidate. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.