121 resultados para Zebu - Embryos
Resumo:
Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.
Resumo:
The objectives were to evaluate preweaning performance, body composition, and efficiency of calves representing straightbred Nellore (NL), F(1), and 3-breed-cross systems. Energy requirements, milk production, and efficiency of 39 cow-calf pairs were recorded from straightbred NL calves from NL cows (10), crossbred (Angus-sired) calves from NL cows (ANL: 9), and crossbred calves (CC; Canchim-sired: 5/8 Charolais, 3/8 Zebu) from ANL (10) and Simmental x NL (10) cows. Cows and their respective calves were individually fed from birth to weaning (17 to 190 d postpartum). At 38 d of age, corn silage (7.8% CP, 2.19 Mcal of ME/kg of DM) was available to calves ad libitum. Milk production at 42, 98, 126, and 180 d postpartum was recorded by weighing calves before and after suckling. The ratio between GE and ME of milk was considered 1:0.93. Calves were slaughtered at weaning and the 9th-, 10th-, and 11th-rib section was removed for body composition estimation. The ANL calves were lighter (P < 0.01) at birth than the CC calves; the NL calves were intermediate. At weaning, the CC calves were heavier (P = 0.04) than the NL and ANL calves (230 +/- 5.5 vs. 172 +/- 8.1 and 209 +/- 8.6 kg, respectively). The ANL calves had greater (371 +/- 27 Mcal; P = 0.01) silage intake than the NL (270 +/- 25 Mcal) and CC (279 +/- 17 Mcal) calves. Milk energy intake was greater for the CC calves (970 +/- 38 Mcal of ME; P = 0.005) than the NL (670 +/- 57 Mcal of ME) and ANL (743 +/- 61 Mcal of ME) calves. The ANL calves compensated for the reduced milk production of the NL cows, which supplied less of their energy requirement for growth by increased silage intake. Calves from crossbred cows received a greater proportion of their total energy intake from milk. Crossbred calves had greater (P < 0.03) retained energy (retained energy = weaning body energy - birth body energy) than the NL calves (388 +/- 23 for ANL, and 438 +/- 15 for CC vs. 312 +/- 22 Mcal for NL calves). Percentages of water (P = 0.74) and chemical fat (P = 0.51) were similar among groups (63.7 +/- 0.6 and 14.3 +/- 0.7% for ANL calves, 63.1 +/- 0.4 and 14.7 +/- 0.5% for CC calves, and 63.3 +/- 0.6 and 13.7 +/- 0.7% of empty BW for water and chemical fat, respectively, for NL calves). Energetic efficiency (kcal of retained energy/Mcal of ME intake) was similar (P = 0.52) among groups (358 +/- 22 for ANL calves, 355 +/- 14 for CC calves, and 327 +/- 22 for NL calves). The greater BW gains and the differences in empty body composition at weaning were not enough to compensate for the greater ME intake of crossbreds. In this study, the crossbreeding systems evaluated increased preweaning calf performance but did not affect gross or energetic calf efficiency.
Resumo:
The objectives of this study were to determine if percentage Bos taurus (0 or 50%) of the cow had an effect on ME requirements and milk production, and to compare cow/calf efficiency among 3 mating systems. Metabolizable energy requirements were estimated during a feeding trial that encompassed a gestation and lactation feeding trial for each of 2 groups of cows. Cows were 0 or 50% Bos taurus ( 100 or 50% Nellore) breed type: Nellore cows (NL; n = 10) mated to Nellore bulls, NL cows ( n = 9) mated to Angus bulls, Angus x Nellore (ANL; n = 10) and Simmental x Nellore (SNL; n = 10) cows mated to Canchim (5/ 8 Charolais 3/ 8 Zebu) bulls. Cows were individually fed a total mixed diet that contained 11.3% CP and 2.23 Mcal of ME/kg of DM. At 14-d intervals, cows and calves were weighed and the amount of DM was adjusted to keep shrunk BW and BCS of cows constant. Beginning at 38 d of age, corn silage was available to calves ad libitum. Milk production at 42, 98, 126, and 180 d postpartum was measured using the weigh-suckle-weigh technique. At 190 d of age, calves were slaughtered and body composition estimated using 9-10-11th-rib section to obtain energy deposition. Regression of BW change on daily ME intake (MEI) was used to estimate MEI at zero BW change. Increase in percentage Bos taurus had a significant effect on daily ME requirements (Mcal/d) during pregnancy (P < 0.01) and lactation (P < 0.01). Percentage Bos taurus had a positive linear effect on maintenance requirements of pregnant (P = 0.07) and lactating (P < 0.01) cows; during pregnancy, the ME requirements were 91 and 86% of those in lactation (131 +/- 3.5 vs. 145 +/- 3.4 Mcal.kg(-0.75).d(-1)) for the 0 and 50% B. taurus groups, respectively. The 50% B. taurus cows, ANL and SNL, suckling crossbred calves had greater total MEI (4,319 +/- 61 Mcal; P < 0.01) than 0% B. taurus cows suckling NL (3,484 +/- 86 Mcal) or ANL calves (3,600 +/- 91 Mcal). The 0% B. taurus cows suckling ANL calves were more efficient (45.3 +/- 1.6 g/Mcal; P = 0.03) than straightbred NL (35.1 +/- 1.5 g/Mcal) and ANL or SNL pairs (41.0 +/- 1.0 g/Mcal). Under the conditions of this study, crossbreeding improved cow/ calf efficiency and showed an advantage for cows that have lower energy requirements.
Resumo:
Data from 9 studies were compiled to evaluate the effects of 20 yr of selection for postweaning weight (PWW) on carcass characteristics and meat quality in experimental herds of control Nellore (NeC) and selected Nellore (NeS), Caracu (CaS), Guzerah (GuS), and Gir (GiS) breeds. These studies were conducted with animals from a genetic selection program at the Experimental Station of Sertaozinho, Sao Paulo State, Brazil. After the performance test (168 d postweaning), bulls (n = 490) from the calf crops born between 1992 and 2000 were finished and slaughtered to evaluate carcass traits and meat quality. Treatments were different across studies. A meta-analysis was conducted with a random coefficients model in which herd was considered a fixed effect and treatments within year and year were considered as random effects. Either calculated maturity degree or initial BW was used interchangeably as the covariate, and least squares means were used in the multiple-comparison analysis. The CaS and NeS had heavier (P = 0.002) carcasses than the NeC and GiS; GuS were intermediate. The CaS had the longest carcass (P < 0.001) and heaviest spare ribs (P < 0.001), striploin (P < 0.001), and beef plate (P = 0.013). Although the body, carcass, and quarter weights of NeS were similar to those of CaS, NeS had more edible meat in the leg region than did CaS bulls. Selection for PWW increased rib-eye area in Nellore bulls. Selected Caracu had the lowest (most favorable) shear force values compared with the NeS (P = 0.003), NeC (P = 0.005), GuS (P = 0.003), and GiS (P = 0.008). Selection for PWW increased body, carcass, and meat retail weights in the Nellore without altering dressing percentage and body fat percentage.
Resumo:
Several studies using transrectal ovarian ultrasonic scanning in Bos taurus (B. taurus) cattle and more recently in Bos indicus (B. Indicus) females evaluated the reproductive cycles of heifers and cows under different conditions. In general, B. indicus cattle have more follicles and more follicular waves during the estrous cycle and ovulate from smaller follicles than B. taurus. Consequently B. indicus females have smaller corpora lutea and it is assumed circulating concentrations of estradiol and progesterone are also less. However, these findings may vary depending on the nutritional status and regimen in which the animals are managed. Moreover, there are significant differences between B. taurus and B. indicus regarding follicle size at the time of deviation of the dominant follicle. These differences in ovarian function between B. indicus and B. taurus, e.g. greater antral follicle population are, probably, the main reasons for the great success of in vitro embryo production programs in Zebu cattle, especially in Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naive Nellore calves infected with Haemonchus placei, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 H. placei 13 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-gamma, MCP-1, lysozyme, pepsinogen and TNF-alpha genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-alpha were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-alpha was down-regulated (p < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (p > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study focuses on the floral development of Copaifera langsdorffii to elucidate uncertain features in its floral morphology, such as the tetramerous calyx, lack of petals, blackened anthers and their supposed sterility, as well as polyembryony. Buds and flowers were dissected and prepared for examination under scanning electron and light microscopes. The floral apex initiates two bracteoles, five sepals, five petals, five outer stamens, five inner stamens, and one carpel. Order is helical for sepals, reversed unidirectional for the petals, and unidirectional for two whorls of stamens. The tetramerous calyx results from the union of two adaxial sepal primordia, which forms one large sepal and three other smaller sepals. Although the flower lacks petals, the petal primordia are initiated but do not elongate like the other floral organs, remaining as petal rudiments. Ten stamens are formed in two distinct whorls. Formation within each whorl is almost simultaneous, and the inner whorl is formed shortly after the outer. During organ elongation, the inner stamen primordia bases are reoriented outward, resulting in a single whorl of stamens. The darkened anthers have viable pollen grains. Thus, there is no relation between sterility and the dark coloration of the anthers. No signs of extranumerary embryos are observed; therefore, polyembryony is not confirmed. Although studies on floral development of Detarieae have been reported, few Neotropical genera of the tribe (such as Copaifera) have been studied.
Resumo:
Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In preparing for metamorphosis, insect larvae store a huge amount of proteins in hemolymph, mainly hexamerins. Out of the four hexamerins present in the honeybee larvae, one, HEX 70a, exhibited a distinct developmental pattern, especially since it is also present in adults. Here, we report sequence data and experimental evidence suggesting alternative functions for HEX 70a, besides its well-known role as an amino acid resource during metamorphosis. The hex 70a gene consists of 6 exons and encodes a 684 amino acid chain containing the conserved hemocyanin N, M, and C domains. HEX 70a classifies as an arylphorin since it contains more than 15% of aromatic amino acids. In the fat body of adult workers, hex 70a expression turned out to be a nutrient-limited process. However, the fat body is not the only site for hex 70a expression. Both, transcript and protein subunits were also detected in developing gonads from workers, queens and drones, suggesting a role in ovary differentiation and testes maturation and functioning. In its putative reproductive role, HEX 70a however differs from the yolk protein, vitellogenin, since it was not detected in eggs or embryos. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate influences of vitrification and warming of metaphase II (MII) mouse oocytes on survival, spindle dynamics. spindle morphology, and chromatin alignment on metaphase plates. Design: Experimental animal Study. Setting: University animal laboratory. Animal(s): Eight-week-old B6D2F1 mice. Intervention(s): Denuded MII oocytes were used fresh (control), exposed to vitrification/warming solutions (Sol Expos), or vitrified and warmed (Vitr). Main Outcome Measure(s): Oocyte recovery and survival after warming and the influence of solution exposure and cryopreservation on spindle dynamics and chromatin alignment. Result(s): Cryopreservation of two or 10 oocytes per straw resulted in recovery (100% +/- 0% and 95% +/- 4%, respectively; mean SE) and survival (95% 2% and 98% 2%, respectively). Immediately after warming (Vitr), significantly fewer oocytes assessed with immunocytochemistry contained spindles, compared with control and Sol Expos. When oocytes were placed into a 3 degrees 7C environment for 2 hours after exposure or warming, the ability to recognize spindles by immunocytochemistry was not significantly different between groups. Using live-cell time-lapse imaging with LC-Polscope, similar time-dependent spindle formation dynamics were observed. At 2 hours after collection or treatment, spindle morphology and length were not significantly different between the groups, nor was the incidence of aberrant alignment of chromatin on metaphase plates. Conclusion(s): Immediately after warming of vitrified MII oocytes, beta-tubulin is depolymerized and chromatin remains condensed on the metaphase plate. Within a 2-hour period, beta-tubulin repolymerizes, forming morphologically normal metaphase spindles with properly aligned chromatin.
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Resumo:
Objective: To compare cryopreservation of mature human oocytes with slow-rate freezing and vitrification and determine which is most efficient at establishing a pregnancy. Design: Prospective randomized. Setting: Academically affiliated, private fertility center. Patient(s): Consenting patients with concerns about embryo cryopreservation and more than nine mature oocytes at retrieval were randomized to slow-rate freezing or vitrification of supernumerary (more than nine) oocytes. Intervention(s): Oocytes were frozen or vitrified, and upon request oocytes were thawed or warmed, respectively. Main Outcome Measure(s): Oocyte survival, fertilization, embryo development, and clinical pregnancy. Result(s): Patient use has resulted in 30 thaws and 48 warmings. Women`s age at time of cryopreservation was similar. Oocyte survival was significantly higher following vitrification/warming (81%) compared with freezing/thawing (67%). Fertilization was more successful in oocytes vitrified/warmed compared with frozen/thawed. Fertilized oocytes from vitrification/warming had significantly better cleavage rates (84%) compared with freezing/thawing (71%) and resulted in embryos with significantly better morphology. Although similar numbers of embryos were transferred, embryos resulting from vitrified oocytes had significantly enhanced clinical (38%) pregnancy rates compared with embryos resulting from frozen oocyte (13%). Miscarriage and/or spontaneous abortion rates were similar. Conclusion(s): Our results suggest that vitrification/warming is currently the most efficient means of oocyte cryopreservation in relation to subsequent success in establishing pregnancy. (Fertil Steril (R) 2010; 94: 2088-95. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Genomic imprinting alterations have been shown to be associated with assisted reproductive technologies (ARTs) in animals. At present, data obtained in humans are inconclusive; however, some epidemiological studies have demonstrated an increased incidence of imprinting disorders in children conceived by ARTs. In the present study, we focused on the effect of ARTs [IVF and intracytoplasmic sperm injection (ICSI)] on the epigenetic reprogramming of the maternally methylated imprinting control region KvDMR1 in clinically normal children. Qualitative and quantitative methylation at KvDMR1 were assessed by the methylation-specific PCR approach and by the methylation-sensitive enzymatic digestion associated with real-time PCR method, respectively. DNA was obtained from peripheral blood of 12/18 and umbilical cord blood and placenta of 6/18 children conceived by IVF or ICSI. The methylation patterns observed in this group were compared with the patterns observed in 30 clinically normal naturally conceived children (negative controls) and in 3 naturally conceived Beckwith-Wiedemann syndrome patients (positive controls). Hypomethylation at KvDMR1 was observed in 3/18 clinically normal children conceived by ARTs (2 conceived by IVF and 1 by ICSI). A discordant methylation pattern was observed in the three corresponding dizygotic twins. Our findings corroborate the hypothesis of vulnerability of maternal imprinting to ARTs. Furthermore, the discordant methylation at KvDMR1 observed between dizygotic twins could be consequent to one of the following possibilities: (i) a differential vulnerability of maternal imprints among different embryos; or (ii) epimutations that occurred during gametogenesis resulting in the production of oocytes without the correct primary imprint at KvDMR1.
Resumo:
Our purpose was to retrospectively compare controlled ovarian stimulation(COH) in IVF cycles with administration of hCG on the day of menses (D1-hCG) with women not receiving hCG at day 1 of menses (Control). Data on maternal age, endocrine profile, amount of rFSH required, embryo characteristics, implantation and pregnancy rates were recorded for comparison between D1-hCG (n = 36) and Control (n = 64). Dose of rFSH required to accomplish COH was significantly lower in D1-hCG. Following ICSI, more top-quality embryos were available for transfer per patient in the D1-hCG and biochemical pregnancy rates per transfer were significantly higher in the D1-hCG. Significantly higher implantation and on-going pregnancy rates per embryo transfer were observed in D1-hCG (64%) compared to Control (41%). Administration of D1-hCG prior to COH reduces rFSH use and enhances oocyte developmental competence to obtain top quality embryos, and improves implantation and on-going pregnancy rates. At present it is not clear if the benefit is related to producing an embryo that more likely to implant or a more receptive uterus, or merely fortuitous and related to the relatively small power of the study.
Resumo:
Resveratrol is a stilbene compound found in grapes and other sources. In this study we examined the effects of trans-resveratrol (4.38-438 mu M/implant) in the vasculogenesis of yolk-sac membranes and its capacity to improve chick embryo growth. High concentrations of the stilbene (43.8-438 mu M) significantly inhibited early vessel formation, decreasing the percentage vitelline vessels of 3.5-day embryos by 50% compared to the control. In addition, basic fibroblast growth factor-stimulated vasculogenesis (140% of vessels as compared to control) was partially reversed by t-resveratrol (35% of inhibition) and treatments with cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) as well a protein-kinase C (PKC) activator (phorbol-12,13-dibutyrate) decreased the vessel number to 60%, 50%, and 44%, respectively. Treatments with t-resveratrol (4.38-43.8 mu M/implant) significantly increased the body length of embryos incubated in vitro uncoupled from any impairment in the body shape or detectable embryotoxic effect. We suggest that the antivasculogenic activity and the enhancement in embryonic growth promoted by non acute treatments with t-resveratrol were, at least in part, due to PKC inhibition. We suggest that t-resveratrol can be usable not only as a reliable functional nutriment, but also is useful for the development of prophylactic and/or therapeutic agents for treatment of angiogenic-degenerative diseases.