160 resultados para WEIGHT-REDUCTION
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
The electrocatalytic reduction of hydrogen peroxide on a glassy carbon (GC) electrode modified with a ruthenium oxide hexacyanoferrate (RuOHCF) was investigated using rotating disc electrode (RDE) voltammetry aiming to improve the performance of the sensor for hydrogen peroxide detection. The influence of parameters such as rotation speed, film thickness and hydrogen peroxide concentration indicated that the rate of the cross-chemical reaction between Ru(II) centres immobilized into the film and hydrogen peroxide controls the overall process. The kinetic regime could be classified as LSk mechanism, according to the diagnostic table proposed by Albery and Hillman, and the kinetic constant of the mediated process was found to be 706 mol(-1) cm(3) s(-1). In the LSk case the reaction layer is located at a finite layer close to the modifier layer/solution interface
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.
Resumo:
Recent surveys have identified anthelmintic effects from many bioactive substances particularly from condensed tannin (CT) sources. The aims of the present study were to investigate the potential anthelmintic effects of condensed tannins (CT) on Trichostrongylus colubriformis in experimentally infected sheep and the nutritional consequences on animals. Twenty helminth-free lambs were divided into five groups of four animals. Groups I to IV were artificially infected with 6,000 third stage larvae (L3) of T. colubriformis. Group I was the infected control and group V was the uninfected control. Twenty-eight days post-infection (p.i.) lambs from GII were supplemented with tanniniferous sorghum (350 g/animal/day, during seven days); GIII were drenched with Acacia mearnsii extract (15% CT) for just one day and GIV during two days (1.6 g extract/kg BW). At day 36 p.i., animals from infected group (GI to GIV) were slaughtered. Faecal egg counts (FEC) values present a reduction on GII when compared with GI at day 29 p.i. (P < 0.05) and between GIII and GI at day 35 and 36 p.i. (P < 0.05). The values of egg hatchability and number of L3 recovered from the faeces were not statistical analyzed (there was no duplicate data), however there was a considerable reduction between the values from treated and control group. The use of CT on diet did not cause significant difference on blood parameters, body-weight and carcass-weight (P > 0.05). No difference was related on total worm burden between treatments; however, GIV presented lower number of females than GI (P < 0.05). The use of CT could be a promising alternative source to reduce the pasture contamination and to control T. colubriformis infection in sheep.
Resumo:
We review recent developments in manifold components and the introduction of light-emitting-diode technology in spectroscopic detection in order to evaluate the tremendous possibilities offered by multi-commutation for infield and in-situ measurements, based on the use of multi-pumping and low-voltage, portable batteries, which make possible a dramatic reduction in size, weight and power requirements of spectrometric devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aims of the present study were to compare the effects of two periodization models on metabolic syndrome risk factors in obese adolescents and verify whether the angiotensin-converting enzyme (ACE) genotype is important in establishing these effects. A total of 32 postpuberty obese adolescents were submitted to aerobic training (AT) and resistance training (RT) for 14 weeks. The subjects were divided into linear periodization (LP, n = 16) or daily undulating periodization (DUP, n = 16). Body composition, visceral and subcutaneous fat, glycemia, insulinemia, homeostasis model assessment of insulin resistance (HOMA-IR), lipid profiles, blood pressure, maximal oxygen consumption (VO(2max)), resting metabolic rate (RMR), muscular endurance were analyzed at baseline and after intervention. Both groups demonstrated a significant reduction in body mass, BMI, body fat, visceral and subcutaneous fat, total and low-density lipoprotein cholesterol, blood pressure and an increase in fat-free mass, VO(2max), and muscular endurance. However, only DUP promoted a reduction in insulin concentrations and HOMA-IR. It is important to emphasize that there was no statics difference between LP and DUP groups; however, it appears that there may be bigger changes in the DUP than LP group in some of the metabolic syndrome risk factors in obese adolescents with regard to the effect size (ES). Both periodization models presented a large effect on muscular endurance. Despite the limitation of sample size, our results suggested that the ACE genotype may influence the functional and metabolic characteristics of obese adolescents and may be considered in the future strategies for massive obesity control.
Resumo:
The ability to transfer weight from one lower limb to the other is essential for the execution of daily life activities and little is known about how weight transfer during unconstrained natural standing is affected by age. This study examined the weight transfer ability of elderly individuals during unconstrained standing (for 30 mill) in comparison to young adults. The subjects (19 healthy elderly adults, range 65-80 years, and 19 healthy young adults, range 18-30 years) stood with each foot on a separate force plate and were allowed to change their posture freely at any time. The limits of stability and base of support width during standing, measures of mobility (using the timed up and go and the preferred walking speed tests), and fear of falling were also measured. In comparison to the young adults, during unconstrained standing the elderly adults produced four times fewer weight transfers of large amplitude (greater than,half of their body weight). The limits of stability and base of support width were significantly smaller for the elderly adults but there were no significant differences in the measures of mobility and in the fear of falling score compared to young adults. The observed significant age-related decrease in the use of weight transfer during unconstrained standing, despite any difference in the measured mobility of the subjects, suggests that this task reveals unnoticed and subtle differences in postural control, which may help to better understand age related impairments in balance that the elderly population experiences. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.
Resumo:
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
ARTIOLI, G. G., B. GUALANO, E. FRANCHINI, F. B. SCAGLIUSI, M. TAKESIAN, M. FUCHS, and A. H. LANCHA. Prevalence, Magnitude, and Methods of Rapid Weight Loss among Judo Competitors. Med. Sci. Sports Exerc., Vol. 42, No. 3, pp. 436-442, 2010. Purpose: To identify the prevalence, magnitude, and methods of rapid weight loss among judo competitors. Methods: Athletes (607 males and 215 females; age = 19.3 +/- 5.3 yr, weight = 70 +/- 7.5 kg, height = 170.6 +/- 9.8 cm) completed a previously validated questionnaire developed to evaluate rapid weight loss in judo athletes, which provides a score. The higher the score obtained, the more aggressive the weight loss behaviors. Data were analyzed using descriptive statistics and frequency analyses. Mean scores obtained in the questionnaire were used to compare specific groups of athletes using, when appropriate, Mann-Whitney U-test or general linear model one-way ANOVA followed by Tamhane post hoc test. Results: Eighty-six percent of athletes reported that have already lost weight to compete. When heavyweights are excluded, this percentage rises to 89%. Most athletes reported reductions of up to 5% of body weight (mean +/- SD: 2.5 +/- 2.3%). The most weight ever lost was 2%-5%, whereas a great part of athletes reported reductions of 5%-10% (mean +/- SD: 6 +/- 4%). The number of reductions underwent in a season was 3 +/- 5. The reductions usually occurred within 7 +/- 7 d. Athletes began cutting weight at 12.6 +/- 6.1 yr. No significant differences were found in the score obtained by male versus female athletes as well as by athletes from different weight classes. Elite athletes scored significantly higher in the questionnaire than nonelite. Athletes who began cutting weight earlier also scored higher than those who began later. Conclusions: Rapid weight loss is highly prevalent in judo competitors. The level of aggressiveness in weight management behaviors seems to not be influenced by the gender or by the weight class, but it seems to be influenced by competitive level and by the age at which athletes began cutting weight.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.